

© SINCLAIR RESEARCH LIMITED
By Roy Atherton (Bulmershe College Computer Centre)

QL
Beginner’s Guide

INDEX

Chapter 1 - Starting Computing

Self Test On Chapter 1
Chapter 2 - Instructing The Computer

Self Test On Chapter 2
Problems On Chapter 2

Chapter 3 - Drawing On The Screen
Self Test On Chapter 3
Problems On Chapter 3

Chapter 4 – Characters And Strings
Self Test On Chapter 4
Problems On Chapter 4

Chapter 5 - Known Good Practlce
Self Test On Chapter 5
Problems On Chapter 5

Chapter 6 – Arrays And For Loops
Self Test On Chapter 6
Problems On Chapter 6

Chapter 7 – Simple Procedures
Self Test On Chapter 7
Problems On Chapter 7

Chapter 8 – From Basic To Superbasic
Chapter 9 - Data Types Variables And Identifiers

Problems On Chapter 9
Chapter 10 – Logic

Problems On Chapter 10
Chapter 11 – Handling Text – Strings

Problems On Chapter 11
Chapter 12 – Screen Output

Problems On Chapter 12
Chapter 13 – Arrays

Problems On Chapter 13
Chapter 14 – Program Structure

Problems On Chapter 14
Chapter 15 – Procedures And Functions

Problems On Chapter 15
Chapter 16 – Some Techniques
17 - Answers To Self Tests

Answers To Self Test On Chapter 1
Answers To Self Test On Chapter 2
Answers To Self Test On Chapter 3
Answers To Self Test On Chapter 4
Answers To Self Test On Chapter 5
Answers To Self Test On Chapter 6
Answers To Self Test On Chapter 7

CHAPTER 1 - STARTING COMPUTING

THE SCREEN

Your QL should be connected to a monitor screen or TV set and switched on. Press a few
keys, say abc, and the screen should appear as shown below. The small flashing light is
called the cursor.

If your screen does not look like this read the section entitled Introduction. This should
enable you to solve any difficulties.

THE KEYBOARD

The QL is a versatile and powerful computer so there are features of the keyboard which
you do not need yet. For the present we will explain just those items which you need for
this and the next six chapters.

BREAK

This enables you to 'break' out of situations you do not like. For example:

a line which you have decided to abandon
something wrong which you do not understand
a running program which has ceased to be of interest
any other problem

Because BREAK is so powerful it has been made difficult to type accidentally.

Hold down CTRL and then press SPACE

If nothing was added or removed from a program while it was halted with BREAK then it
can be restarted by typing:

CONTINUE

RESET

This is not a key but a small push button on the right hand side of the QL. It is placed here
deliberately, out of the way, because its effects are more dramatic than the break keys. If
you cannot achieve what you need with the break keys then press the RESET Button. This
is almost the same as switching the computer off and on again. You get a clean re-start.

SHIFT

There are two SHIFT keys because they are used frequently and need to be available to
either hand.

Hold down one SHIFT key and type some letter keys. You will get upper case
(capital) letters.

Hold down one SHIFT key and type some other key not a letter. You will get a
symbol in an upper position on the key.

Without a SHIFT key you get lower case (small) letters or a symbol in a lower
position on a key.

CAPITALS LOCK

This key works like a switch Just press it once and only the letter keys will be 'locked' into a
particular mode - upper case or lower case.

Type some letter keys.

Type the CAPS LOCK key once.
Type some letter keys.

You will see that the mode changes and remains until you type the CAPS LOCK key
again.

SPACE BAR

The long key at the bottom of the keyboard gives spaces. This is a very important key in
SuperBASIC as you will see in chapter two.

RUBBING OUT

The left cursor together with the CTRL key acts like a rubber (eraser). You must hold down
the CTRL key while you press the cursor key. Each time you then press both together the
previous character is deleted.

ENTER

The system needs to know when you have typed a complete message or instruction.
When you have typed something complete such as RUN you type the ENTER key to enter
it into the system for action.

Because this key is needed so often we have used a special symbol for it:



We shall use this for convenience, better presentation, and to save space. Test the 
(ENTER) key by typing

PRINT "Correct" 

If you made no mistakes the system will respond with

Correct

OTHER KEYBOARD SYMBOLS OF IMMEDIATE USE

* multiply + Add

_ underscore = becomes equal to (used in LET)

“ quotes ‘ Apostrophe

, comma ! Exclamation

; semi colon & Ampersand

: colon . decimal point or full stop

\ backslash $ Dollar

(left bracket) right bracket

UPPER AND LOWER CASE

CLS 

Cls 

clS 

These are all correct and have the same effect. Some keywords are displayed partly, in
upper case to show allowed abbreviations. Where a keyword cannot be abbreviated it is
displayed completely in upper case.

USE OF QUOTES

The usual use of quotes is to define a word or sentence – a string of characters. Try:

PRINT “This works” 

The computer will respond with:

This works

The quotes are not printed but they indicate that some text is to be printed and they define
exactly what it is - everything between the opening and closing quote marks. If you wish to
use the quote symbol itself in a string of characters then the apostrophe symbol can be
used instead. For example:

PRINT 'The quote symbol is "'

will work and will print

The quote symbol is "

COMMON TYPING ERRORS

The zero key is with the other numeric digits at the top of the keyboard, and is slightly
thinner.

The letter 'O' key is amongst the other letters. Be careful to use the right symbol.

Similarly avoid confusion between one, amongst the digits, and the letter 'I' amongst the
letters between one, amongst the digits, and the letter 'I' amongst the letters.

KEEP SHIFT DOWN

When using a SHIFT key hold it down while you type the other key so that the SHIFT key
makes contact before the other key and also remains in contact until after the other key
has lifted.

The same rule applies to the control CTRL and alternate ALT keys which are used in
conjunction with others but you do not need those at present.

Type the two simple instructions:

CLS 

PRINT 'Hello' 

Strictly speaking these constitute a computer program, however it is the stored program
that is important in computing. The above instructions are executed instantly as you type 
(ENTER)

Now type the program with line numbers:

10 CLS 

20 PRINT 'HELLO' 

This time nothing happens externally except that the program appears in the upper part of
the screen This means that it is accepted as correct grammar or syntax. It conforms to the

rules of SuperBASIC, but it has not yet been executed, merely stored. To make it work,
type:

RUN 

The distinction between direct commands for immediate action and a stored sequence of
instructions is discussed in the next chapter. For the present you can experiment with the
above ideas and two more:

LIST 

causes an internally stored program to be displayed (listed) on the screen or elsewhere.

NEW 

causes an internally stored program to be deleted so that you can type in a NEW one.

SELF TEST ON CHAPTER 1

You can score a maximum of 16 points from the following test. Check your score with the
answers page at the end of this Beginner's Guide.

1. In what circumstances might you use the BREAK sequence?

2. Where is the RESET button?

3. What is the effect of the RESET button?

4. Name two differences between a SHIFT key and the CAPS LOCK key.

5. How can you delete a wrong character which you have just typed?

6. What is the purpose of the ENTER key?

7. What symbol do we use for the ENTER key?

What is the effect of the commands in questions 8 to 11

8. CLS 

9. RUN 

10. LIST 

11. NEW 

12. Do keywords have the proper effect if you type them in lower case?

13. What is the significance of the parts of keywords which the QL displays in upper case?

CHAPTER 2 - INSTRUCTING THE COMPUTER

Computers need to store data such as numbers. The storage can be imagined as pigeon
holes.

Though you cannot see them, you do need to give names to particular pigeon holes.
Suppose you want to do the following simple calculation.

A dog breeder has 9 dogs to feed for 28 days, each at the rate of one tin of 'Beefo' per day.
Make the computer print (display on the screen) the required number of tins.

One way of solving this problem would require three pigeon holes for

number of dogs
number of days
total number of tins

SuperBASiC allows you to choose sensible names for pigeon holes and you may choose
as shown:

 dogs days tins

You can make the computer set up a pigeon hole name it, and store a number in it with a
single instruction or statement such as:

LET dogs = 9 

This will set up an internal pigeon hole named dogs, and place in it the number 9 thus:

 dogs 9

The word LET has a special meaning to SuperBASIC. It is called a keyword. SuperBASIC
has many
other keywords which you will see later. You must be careful about the space after LET
and other keywords. Because SuperBASIC allows you to choose pigeon hole names with
great freedom LETdogs would be a valid pigeon hole name.

The LET keyword is optional In SuperBASIC and because of this statements like

LETdogs = 9 

are valid. This would refer to a pigeon hole called LETdogs

Just as in English, names, numbers and keywords should be separated from each other by
spaces If they are not separated by special characters.

Even if it were not necessary, a program line without proper spacing is bad style. Machines
with small memory size may force programmers into it, but that is not a problem with the
QL You can check that a pigeon hole exists internally by typing:

PRINT dogs 

The screen should display what is in the pigeon hole:

9

Again be careful to put a space after PRINT.

To solve the problem we can write a program which is a sequence of instructions or
statements. You can now understand the first two:

LET dogs = 9 

LET days = 28 

These cause two pigeon holes to be set up, named, and given numbers or values. The
next instruction must perform a multiplication, for which the computer's symbol is *, and
place the result in a new pigeon hole called tins thus:

LET tins = dogs * days 

1. The computer gets the values, 9 and 28, from the two pigeon holes named dogs and
days
2. The number 9 is multiplied by 28.
3. A new pigeon hole is set up and named tins.
4. The result of the multiplication becomes the value in the pigeon hole named tins.

All this may seem elaborate but you need to understand the ideas, which are very
important.

The only remaining task is to make the computer print the result which can be done by
typing

PRINT tins

which will cause the output:

252

to be displayed on the screen.

In summary the program:

LET dogs = 9

LET days = 28

LET tins = dogs * days

PRINT tins

causes the internal effects best imagined as three named pigeon holes containing
numbers:

 dogs 9 x days 28 = tins 252

and the output on the screen:

252

Of course, you could achieve this result more easily with a calculator or a pencil and paper
You could do it quickly with the QL by typing:

PRINT 9 * 28 

which would give the answer on the screen. However the ideas we have discussed are the
essential starting points of programming in SuperBASIC. They are so essential that they
occur in many computer languages and have been given special names.

1. Names such as dogs, days and tins are called identifiers.

2. A single instruction such as:
LET dogs = 9 

is called a statement.

3. The arrangement of name and associated pigeon hole is called a variable. The
execution of the above statement stores the value 9 in the pigeon hole 'identified'
by the Identifier dogs.

A statement such as:

LET dogs = 9 

is an instruction for a highly dynamic internal process but the printed text is static and it
uses the = sign borrowed from mathematics. It is better to think or say (but not type):

LET dogs become 9 

and to think of the process having a right to left direction (do not type this):

dogs  9

The use of = in a LET statement is not the same as the use of = in mathematics. For
example, if another dog turns up you may wish to write:

LET dogs = dogs + 1 

Mathematically this is not very sensible but in terms of computer operations it is simple. If
the value of dogs before the operation was 9 then the value after the operation would be
10. Test this by typing:

LET dogs = 9 

PRINT dogs 

LET dogs = dogs + 1 

PRINT dogs 

The output should be:

9

10

proving that the final value in the pigeon hole is as shown:

 dogs 9

A good way to understand what is happening to the pigeon holes, or variables, is to do
what is called a "dry run". You simply examine each instruction in turn and write down the
values which result from each instruction to show how the pigeon holes are set up and
given values, and how they retain their values as the program is executed.

LET dogs = 9 

LET days = 28 

LET tins = dogs * days 

PRINT tins

The output should be

252

You may notice that so far a variable name has always been used first on the left hand
side of a LET statement. Once the pigeon hole is set up and has a value, the
corresponding variable name can be used on the right hand side of a LET statement.

Now suppose you wish to encourage a small child to save money. You might give two bars
of chocolate for every pound saved. Suppose you try to compute this as follows:

LET bars = pounds * 2 

PRINT bars 

You cannot do a dry run as the program stands because you do not know how many
pounds
have been saved.

We have made a deliberate error here in using pounds on the right of a LET statement
without it having been set up and give n some value. Your QL will search internally for the
variable "pounds". It will not find it, so it concludes that there is an error in the program and
gives an error message. If we had tried to print out the value of "pounds", the QL would
have printed a * to indicate that "pounds" was undefined. We say that the variable pounds
has not been initialised (given an initial value). The program works properly if you do this
first.

 bars pounds

LET pounds = 7  7

LET bars = pounds * 2  7 14

The program works properly and gives the output:

14

A STORED PROGRAM

Typing statements without line numbers may produce the desired result but there are two
reasons why this method, as used so far, is not satisfactory except as a first introduction.

1. The program can only execute as fast as you can type. This is not very impressive for

a machine that can do millions of operations per second.
2. The individual instructions are not stored after execution so you cannot run the

program again or correct an error without re-typing the whole thing.

Charles Babbage, a nineteenth century computer pioneer knew that a successful computer
needed to store instructions as well as data in internal pigeon holes. These instructions
would then be executed rapidly in sequence without further human intervention.

The program instructions will be stored but not executed if you use line numbers. Try this:

10 LET price = 15 

20 LET pens = 7 

30 LET cost = price * pens 

40 PRINT cost 

Nothing happens externally yet, but the whole program is stored internally. You make it
work by typing:

RUN 

and the output:

105

should appear.

The advantage of this arrangement is that you can edit or add to the program with
minimal extra typing.

EDITING A PROGRAM

Later you will see the full editing features of SuperBASIC but even at this early stage you
can do three things easily:

replace a line
insert a new line
delete a line

Replace a line

Suppose you wish to alter the previous program because the price has changed to 20p for
a pen. Simply re-type line 10.

10 LET price = 20 

This line will replace the previous line 10. Assuming the other lines are still stored, test
the program by typing:

RUN 

and the new answer, 140, should appear.

Insert a new line

Suppose you wish to insert a line just before the last one, to print the words 'Total Cost.'
This situation often arises so we usually choose line numbers 10, 20, 30 ... to allow space
to insert extra lines.

To put in the extra line type

35 PRINT "Total Cost" 

and it will be inserted just before line 40. The system allows line numbers in the range 1 to
32768 to allow plenty of flexibility in choosing them. It is difficult to be quite sure in advance
what changes may be needed.

Now type:

RUN 

and the new output should be:

Total cost

140

Delete Line

You can delete line 35 by typing:

35 

It is as though an empty line has replaced the previous one.

OUTPUT- PRINT

Note how useful the PRINT statement is. You can PRINT text by using quotes or
apostrophes:

PRINT "Chocolate bars" 

You can print the values of variables (contents of pigeon holes) by typing statements such
as:

PRINT bars 

without using quotes.

You will see later how very versatile the PRINT statement can be in SuperBASIC. It will
enable you to place text or other output on the screen exactly where you want it. But for
the present these two facilities are useful enough:

printing of text
printing values of variables (contents of pigeon holes).

INPUT- INPUT, READ AND DATA

A carpet-making machine needs wool as input. It then makes carpets according to the
current design.

If the wool is changed you may get a different carpet.

The same sort of relations exist in a computer.

However, if the data is input into pigeon holes by means of LET there are two
disadvantages when you get beyond very trivial programs:

writing LET statements is laborious
changing such input is also laborious

You can arrange for data to be given to a program as it runs. The INPUT statement will
cause the program to pause and wait for you to type in something at the keyboard. First
type:

NEW 

so that the previous stored program (if it is still there) will be erased ready for this new one.
Now type:

10 LET price = 15 

20 PRINT "How many pens?" 

30 INPUT pens 

40 LET cost = price * pens 

50 PRINT cost 

RUN 

The program pauses at line 30 and you should type the number of pens you want, say:

4 

Do not forget the ENTER key. The output will be:

60

The INPUT statement needs a variable name so that the system knows where to put the
data which comes in from your typing at the keyboard. The effect of line 30 with your typing
is the same as a LET statement's effect. It is more convenient for some purposes when
interaction between computer and user is desirable. However, the LET statement and the
INPUT statement are useful only for modest amounts of data. We need something else to
handle larger amounts of data without pauses in the execution of the program.

SuperBASIC, like most BASICs, provides another method of input known as READing
from DATA statements. We can retype the above program in a new form to give the same
effects without any pauses. Try this:

NEW 

10 READ price, pens 

20 LET cost = price * pens 

30 PRINT cost 

40 DATA 15, 4 

RUN 

The output should be:

60

as before.

Each time the program is run, SuperBASIC needs to be told where to start reading DATA
from. This can either be done by typing RESTORE followed by the DATA line number or
by typing CLEAR. Both these commands can also be inserted at the start of the programs.

When line 10 is executed the system searches the program for a DATA statement. It then
uses the values in the DATA statement for the variables in the READ statement in exactly
the same order. We usually place DATA statements at the end of a program. They are
used by the program but they are not executed in the sense that every other line is
executed in turn. DATA statements can go anywhere in a program but they are best at the
end, out of the way. Think of them as necessary to, but not really part of, the active
program. The rules about READ and DATA are as follows:

1. All DATA statements are considered to be a single long sequence of items. So far

these items have been numbers but they could be words or letters.
2. Every time a READ statement is executed the necessary items are copied from the

DATA statement into the variables named in the READ statement.
3. The system keeps track of which items have been READ by means of an internal

record. If a program attempts to READ more items than exist in all the DATA
statements an error will be signalled.

IDENTIFIERS (NAMES)

You have used names for 'pigeon holes' such as "dogs", "bars". You may choose words
like these according to certain rules:

A name cannot include spaces.

A name must start with a letter.

A name must be made up from letters, digits, $, %, _ (underscore)

The symbols $, % have special purposes, to be explained later, but you can use
the underscore to make names such as:

dog_food
month_wage_total

more readable.

SuperBASIC does not distinguish between upper and lower case letters, so names
like TINS and tins are the same.

The maximum number of characters in a name is 255.

Names which are constructed according to these rules are called identifiers. Identifiers
are used for other purposes in SuperBASIC and you need to understand them. The rules
allow great freedom in choice of names so you can make your programs easier to
understand. Names like total, count, pens are more helpful than names like Z, P, Q.

SELF TEST ON CHAPTER 2

You can score a maximum of 21 points from this test Check your score with the answers in
"Answers To Self Test" section at the end of this Beginner's Guide.

1. How should you imagine an internal number store?

2. State two ways of storing a value in an internal 'pigeon hole' to be created (two points)

3. How can you find out the value of an internal 'pigeon hole'?

4. What is the usual technical name for a 'pigeon hole'?

5. When does a pigeon hole get its first value?

6. A variable is so called because its value can vary as a program is executed. What is

the usual way of causing such a change?

7. The = sign in a LET statement does not mean 'equals' as in mathematics. What does it

mean?

8. What happens when you ENTER an unnumbered statement?

9. What happens when you ENTER a numbered statement?

10. What is the purpose of quotes in a PRINT statement?

11. What happens when you do not use quotes in a PRINT statement?

12. What does an INPUT statement do which a LET statement does not?

13. What type of program statement is never executed?

14. What is the purpose of a DATA statement?

15. What is another word for the name of a pigeon hole (or variable)?

16. Write down three valid identifiers which use letters, letters and digits, letters and

underscore (three points)

17. Why is the space bar especially important in SuperBASlC?

18. Why are freely chosen identifiers important in programming?

PROBLEMS ON CHAPTER 2

1. Carry out a dry run to show the values of all variables as each line of the following
program is executed:

10 LET hours = 40 

20 LET rate = 31 

30 LET wage = hours * rate 

40 PRINT hours, rate, wage 

2. Write and test a program, similar to that of problem 1, which compute s the area of a

carpet is 3 metres in width and 4 metres in length. Use the variable names: width,
length, area.

3. Re-write the program of problem 1 so that it uses two INPUT statements instead of

LET statements.

4. Re write the program of problem 1 so that the input data (40 and 3) appears in a DATA

statement instead of a LET statement.

5. Re write the program of problem 2 using a different method of data input. Use READ

and DATA if you originally used LET and vice-versa.

6. Bill and Ben agree to have a gamble. Each will take out of his wallet all the pound

notes and give them to the other. Write a program to simulate this entirely with LET
and PRINT statements. Use a third person, Sue, to hold Bill's money while he accepts
Ben's.

7. Re-write the program of problem 6 so that a DATA statement holds the two numbers to

be exchanged.

CHAPTER 3 - DRAWING ON THE SCREEN

In order to use either a television set or monitor with the QL, two different screen modes
are available. MODE 8 permits eight colour displays with a graphics resolution of 256 by
256 pixels and large characters for display on a television set. MODE 4 allows four colours
with a resolution of 512 by 256 pixels and a maximum of eighty character lines for which a
monitor must be used for successful display. However, it would be unfortunate if a program
was written to draw circles or squares in one mode and produced ellipses or rectangles in
another mode (as some systems do). We therefore provide a system of scale graphics
which avoids these problems. You simply choose a vertical scale and work to it. The other
type of graphics (pixel oriented) is also available and is described fully in a later chapter.

Suppose, for example, that we choose a vertical scale of 100 and we wish to draw a line
from position (50,60) to position (70,80).

A COLOURED LINE

We need to specify three things:

PAPER (background colour)
INK (drawing colour)
LINE (start and end points)

The followingprogram will draw a line as shown in the above figure in red (colour code 2)
on a white (colour code 7) background.

NEW 

10 PAPER 7 : CLS 

20 INK 2 

30 LINE 50,60 TO 70,80 

RUN 

In line 10 the paper colour is selected first but it only comes into effect with a further
command, such as CLS, meaning clear the screen to the current paper colour.

MODES AND COLOURS

So far it does not matter which screen mode you are using but the range of colours is
affected by the choice of mode.

MODE 8 allows eight basic colours
MODE 4 allows four basic colours

Colours have codes as described below.

Code Effect

 8 colour 4 colour

0 black black

1 blue black

2 red red

3 magenta red

4 green green

5 cyan green

6 yellow white

7 white white

For example, INK 3 would give magenta in MODE 8 and red in MODE 4.

We will explain in a later chapter how the basic colours can be 'mixed' in various ways to
produce a startling range of colours, shades and textures.

RANDOM EFFECTS

You can get some interesting effects with random numbers which can be generated with
the RND function. For example:

PRINT RND (1 TO 6)

will print a whole number in the range 1 to 6, like throwing an ordinary six-sided dice. The
following program will illustrate this:

NEW 

10 LET die = RND(1 TO 6) 

20 PRINT die 

RUN 

If you run the program several times you will get different numbers.

You can get random whole numbers in any range you like. For example:

RND(0 TO 100)

will produce a number which can be used in scale graphics. You can re-write the line
program so that it produces a random colour. Where the range of random numbers starts
from zero you can omit the first number and write:

RND(100)

NEW 

10 PAPER 7 : CLS 

20 INK RND(5) 

30 LINE 50,60 TO RND(100),RND(100) 

RUN 

This produces a line starting somewhere near the centre of the screen and finishing at
some random point. The range of possible colours depends on which mode is selected.
You will find that a range of numbers ‘something TO something’ occurs often in
SuperBASIC.

BORDERS

The part of the screen in which you have drawn lines and create other output is called a
window. Later you will see how you can change the size and position of a window or create
other windows. For the present we shall be content to draw a border round the current
window. The smallest area of light or colour you can plot on the screen is called a pixel. In
mode 8, called low resolution mode, there are 256 possible pixel positions across the
screen and 256 down. In mode 4, called high resolution mode, there are 512 pixels across
the screen and 256 down. Thus the size of a pixel depends on the mode.

You can make a border round the inside edge of a window by typing for example:

BORDER 4,2 

This will create a border 4 pixels wide in colour red (code 2). The effective size of the
window is reduced by the border. This means that any subsequent printing or graphics will
automatically fit within the new window size. The only exception to this is a further border
which will overwrite the existing one.

A SIMPLE LOOP

Computers can do things very quickly but it would not be possible to exploit this great
power if every action had to be written as an instruction. A building foreman has a similar
problem. If he wants a workman to lay a hundred paving stones that is roughly what he
says. He does not give a hundred separate instructions.

A traditional way of achieving looping or repetition in BASIC is to use a GO TO (or GOTO,
they are the same) statement as follows.

NEW 

10 PAPER 6 : CLS 

20 BORDER 1,2 

30 INK RND(5) 

40 LINE 50,60 TO RND(100),RND(100) 

50 GOTO 30 

RUN 

You may prefer not to type in this program because SuperBASIC allows a better way of
doing repetition. Note certain things about each line.

10
Fixed part – not repeatd

20

30
Changeable part – repeated

40

50 Controls program

You can re-write the above program by omitting the GOTO statement and, instead, putting
REPeat and END REPeat around the part to be repeated.

NEW 

10 PAPER 6 : CLS 

20 BORDER 1,2 

30 REPEAT star 

40 INK RND(5) 

50 LINE 50,60 TO RND(100),RND(100) 

60 END REPEAT star 

RUN 

We have given the repeat structure a name, star. The structure consists of the two lines:

REPeat star

END REPeat star

and what lies between them is called the content of the structure. The use of upper case
letters indicates that REP is a valid abbreviation of REPeat.

This program should produce coloured lines indefinitely to make a star as shown in the
figure below.

The STAR program

You can stop it by pressing the break keys:

Hold down CTRL and then press SPACE .

SuperBASIC provides a consistent and versatile method of stopping repetitive processes.
Imagine running round and round inside the program activating statements. How can
you escape? The answer is to use an EXIT statement. But there must be some reason
for escaping. You might extend the choice of line colours by typing as an amendment
to the program (do not type NEW):

40 INK RND (0 TO 6) 

so that if RND produces 6 the ink is the same colour as the paper and you will not see
it. This could be the reason for terminating the repetition. We can re-arrange the
program as follows:

NEW 

10 PAPER 6 : CLS 

20 BORDER 1 ,2 

30 REPeat star 

40 LET colour = RND(6) 

50 IF colour = 6 THEN EXIT star 

60 INK colour 

70 LINE 50,60 TO RND(100),RND(100) 

80 END REPeat star 

The important thing to note here is that the program continues until "colour" becomes 6.
Control then escapes from the loop to the point just after line 80. Since there are no
program lines after 80 the program stops.

Another important concept has been introduced. It is the idea of a decision.

IF colour = 6 THEN EXIT star

This is another very useful structure because it is a choice of doing something or not; we
call it a simple binary decision. Its general form is:

IF condition THEN statement(s)

You will see later how the two concepts of repetition (or looping) and decision-making (or
selection) are the main structures for program control. You can stop the program by
pressing the break keys: hold down CTRL and then press the space bar.

SELF TEST ON CHAPTER 3

You can score a maximum of 13 points from the following test. Check your score with the
answers on Page 107 - in the "Answers to self test" section at the end of this Beginner's
Guide.

1. What is a pixel?

2. How many pixels fit across the screen in the low resolution mode?

3. How many pixels fit from bottom to top in low resolution mode?

4. What are the two numbers which determine the 'address' or position of a
graphics point on the screen?

5. How many colours are available in the low resolution mode?

6. Name the keywords which do the following:

i. draw a line
ii. select a colour for drawing
iii. iii select a background colour
iv. draw a border (5 points)

7. What are the statements which open and close the REPeat loop?

8. When does an executing REPeat loop terminate?

9. Why do loops in SuperBASIC have names?

PROBLEMS ON CHAPTER 3

1. Write a program to draw straight lines all over the screen. The lines should be of
random length and direction. Each should start where the previous one finished
and each should have a randomly chosen colour.

2. Write a program to draw lines randomly with the restriction that each line has a

random start on the left hand edge of the screen.

3. Write a program to draw lines randomly with the restriction that the lines start at

the same point on the bottom edge of the screen.

4. Write a program to produce lines of random length, starting points and colour. All
lines must be horizontal.

5. As problem 4 but make the lines vertical.

6. Write a program to produce a square 'spiral' in such a way that each line makes a

random colour

HINT: First find the co-ordinates of some of the corners, then put them in groups of
four. You should discover a pattern.

CHAPTER 4 – CHARACTERS AND STRINGS

Teachers sometimes wish to assess the reading ability needed for particular books or
classroom materials. Various tests are used and some of these compute the average
lengths of words and sentences. We will introduce ideas about handling words or
character strings by examining simple approaches to finding average word lengths.

We are talking about sequences of letters, digits or other symbols which may or may not
be words. That is why the term 'character string' has been invented. It is usually
abbreviated to string. Strings are handled in ways similar to number handling but, of
course, we do not do the same operations on them. We do not multiply or subtract strings.
We join them, separate them, search them and generally manipulate them as we need.

NAMES AND PIGEON HOLES FOR STRINGS

You can create pigeon holes for strings. You can put character strings into pigeon holes
and use the information just as you do with numbers. If you intend to store (not all at once)
words such as:

FIRST SECOND THIRD
and

JANUARY FEBRUARY MARCH

you may choose to name two pigeon holes:

 weekday$ month$

Notice the dollar sign. Pigeon holes for strings are internally different from those for
numbers and SuperBASIC needs to know which is which. All names of string pigeon holes
must end with $. Otherwise the rules for choosing names are the same as the rules for the
names of numeric pigeon holes.

You may pronounce:

weekday$ as weekdaydollar
month$ as monthdollar

The LET statement works in the same way as for numbers. If you type:

LET weekday$ = "FIRST" 

an internal pigeon hole, named weekday$ will be set up with the value FIRST in it thus:

 weekday$ FIRST

The quote marks are not stored. They are used in the LET statement to make it absolutely
clear what is to be stored in the pigeon hole. You can check by typing:

PRINT weekday$ 

and the screen should display what is in the pigeon hole:

FIRST

You can use a pair of apostrophes instead of a pair of quote marks.

LENGTHS OF STRINGS

SuperBASIC makes it easy to find the length or number of characters of any string. You
simply write, for example:

PRINT LEN(weekday$) 

If the pigeon hole, weekday$, contains FIRST the number 5 will be displayed. You can see
the effect in a simple program:

NEW 

10 LET weekday$ = "FIRST" 

20 PRINT LEN(weekday$) 

RUN 

The screen should display:

5

LEN is a keyword of SuperBASIC

An alternative method of achieving the same result uses both a string pigeon hole and a
numeric pigeon hole.

NEW 

10 LET weekday$ = "FIRST" 

20 LET length = LEN(weekday$) 

30 PRINT length 

RUN 

The screen should display:

5

as before, and two internal pigeon holes contain the values shown:

 weekday$ FIRST length 5

Let us return to the problem of average lengths of words.

Write a program to find the average length of the three words:

FIRST, OF, FEBRUARY

PROGRAM DESIGN

When problems get beyond what you regard as very trivial, it is a good idea to construct a
program design before writing the program itself

1. Store the three words in pigeon holes.
2. Compute the lengths and store them.
3. Compute the average.
4. Print the result.

NEW 

10 LET weekday$ = "FIRST" 

20 LET word$ = "OF" 

30 LET month$ = "FEBRUARY" 

40 LET length1 = LEN (weekday$) 

50 LET length2 = LEN (word$) 

60 LET length3 = LEN (month$) 

70 LET sum = length1 + length2 + length3 

80 LET average = sum/3 

90 PRINT average 

RUN 

The symbol / means divided by. The output or result of running the program is simply:

5

And there are eight internal pigeon holes involved:

weekday$ FIRST

length1 5

word$ OF

length2 2

month$ FEBRUARY

length3 3

sum 15

average 5

If you think that is a lot of fuss for a fairly simple problem you can certainly shorten it. The
shortest version would be a single line but it would be less easy to read. A reasonable
compromise uses the symbol "&" which stands for the operation:

Join two strings

Now type:

NEW 

10 LET weekday$ = "FIRST" 

20 LET word$ = "OF" 

30 LET month$ = "FEBRUARY" 

40 LET phrase$ = weekday$ & word$ & month$ 

50 LET length = LEN(phrase$) 

60 PRINT length/3 

RUN 

The output is 5 as before but there are some different internal effects:

Weekday$ FIRST Length 15

Word$ OF

Month FEBRUARY

Phrase$ FIRSTOFFEBRUARY

There is one more reasonable simplification which is to use READ and DATA instead of
the first three LET statements. Type:

NEW 

10 READ weekday$, word$, month$ 

20 LET phrase$ = weekday$ & word$ & month$ 

30 LET length = LEN(phrase$) 

40 PRINT length/3 

50 DATA "FIRST","OF","FEBRUARY" 

RUN 

The internal effects of this version are exactly the same as those of the previous one.
READ causes the setting up of internal pigeon holes with values in them in a similar way to
LET.

IDENTIFIERS AND STRING VARIABLES

Names of pigeon holes, such as:

weekday$
word$
month$
phrase$

are called string identifiers. The dollar signs imply that the pigeon holes are for character
strings. The dollar must always be at the end.

Pigeon holes of this kind are called string variables because they contain only character
strings which may vary as a program runs.

The contents of such pigeon holes are called values. Thus words like 'FIRST' and 'OF' may
be values of string variables named weekday$ and +word$

RANDOM CHARACTERS

You can use character codes (see Concept Reference Guide) to generate random letters.
The upper case letters A to Z have the codes 65 to 90. The function CHR$ converts these
codes into letters. The following program will print a letter B.

NEW 

10 LET lettercode = 66 

20 PRINT CHR$ (lettercode) 

RUN 

The following program will generate trios of letters A, B, or C until the word CAB is spelled
accidentally.

NEW 

10 REPeat taxi

20 LET first$ = CHR$(RND(65 TO 67))

30 LET second$ = CHR$(RND(65 TO 67))

40 LET third$ = CHR$(RND(65 TO 67))

50 LET word$ = first$ & second$ & third$

60 PRINT ! word$!

70 IF word$ = "CAB" THEN EXIT taxi

80 END REPeat taxi

Random characters, like random numbers or random points are useful for learning to
program. You can easily get interesting effects for program examples and exercises.

Note the effect the ! … ! have on the spacing of the output.

SELF TEST ON CHAPTER 4

You can score a maximum of 10 points from the following test. Check your score with the
answers in the "Answers To Self Tests" section at the end of this Beginner's Guide.

1. What is a character string?

2. What is the usual abbreviation of the term, 'character string'?

3. What distinguishes the name of a string variable?

4. How do some people pronounce a word such as 'word$'?

5. What keyword is used to find the number of characters in a string?

6. What symbol is used to join two strings?

7. Spaces can be part of a string. How are the limits of a string defined?

8. When a statement such as:

LET meat$ = "steak"

is executed, are the quotes stored?

9. What function will turn a suitable code number into a letter?

10. How can you generate random upper case letters?

PROBLEMS ON CHAPTER 4

1. Store the words 'Good' and 'day' in two separate variables. Use a LET statement to
join the values of the two variables in a third variable. Print the result.

2. Store the following words in four separate pigeon holes:

light let be there

Join the words to make a sentence adding spaces and a full stop. Store the whole
sentence in a variable, sent$, and print the sentence and the total number of
characters it contains.

3. Write a program which uses the keywords:

CHR$ RND(65 TO 90))

to generate one hundred random three letter words. See if you have accidentally
generated any real English words. Test the effects of:

a) ; at the end of a PRINT statement.
b) ! on either side of item printed.

CHAPTER 5 - KNOWN GOOD PRACTlCE

You have already begun to work effectively with short programs. You may have found the
following practices are helpful:

1. Use of lower case for identifiers: names of variables (pigeon holes) or repeat

structures, etc.
2. Indenting of statements to show the content of a repeat structure.
3. Well chosen identifiers reflecting what a variable or repeat structure is used for.
4. Editing a program by:

replacing a line
inserting a line
deleting a line

PROGRAMS AS EXAMPLES

You have reached the stage where it is helpful to be able to study programs to learn from
them and to try to understand what they do. The mechanics of actually running them
should now be well understood and in the following chapters we will dispense with the
constant repetition of:

NEW before each program

 at the end of each line

RUN to start each program

You will understand that you should use all these features when you wish to enter and run
a program. But their omission in the text will enable you to see the other details more
clearly as you try to imagine what the program will do when it runs.

If we dispense with the above details we may use and understand programs more easily
without the technical clutter. For example, the following program generates random upper
case letters until a Z
appears. It does not show the words NEW or RUN or the ENTER symbol but you still need
to use these.

10 REPeat letters

20 LET lettercode = RND(65 TO 90)

30 cap$ = CHR$(lettercode)

40 PRINT cap$

50 IF cap$ = "Z" THEN EXIT letters

60 END REPeat letters

In this and subsequent chapters programs will be shown without ENTER symbols. Direct
commands will also be shown without ENTER symbols. But you must use these keys as
usual. You must also remember to use NEW and RUN as necessary

AUTOMATIC LINE NUMBERING

It is tedious to enter line numbers manually. Instead you can type:

AUTO

before you start programming and the QL will reply with a line number:

100

Continue typing lines until you have finished your program when the screen will show:

100 PRINT "First"

110 PRINT "Second"

120 PRINT "End"

To finish the automatic production of line numbers use the BREAK sequence:

Hold down the CTRL and press the SPACE bar. This will produce the message:
130 not complete

and line 130 will not be included in your program.

If you make a mistake which does not cause a break from automatic numbering, you can
continue and EDIT the line later. If you want to start at some particular line number say
600, and use an increment other than 10 you can type, for an increment of 5:

AUTO 600,5

Lines will then be numbered 600, 605, 610, etc.

To cancel AUTO, press CTRL and the SPACE bar at the same time.

EDITING A LINE

To edit a line simply type EDIT followed by the line number for example:

EDIT 110

The line will then be displayed with the cursor at the end thus:

110 PRINT "Second"

You can move the cursor using:

 one place left

 one place right

To delete a character to the left use:

CTRL with 

To delete the character in the cursor position type:

CTRL with 

and the character to the right of the cursor will move up to close the gap.

USING MICRODRIVE CARTRIDGES

Before using a new Microdrive cartridge it must be formatted. Follow the instructions in the
Introduction. The choice of name for the cartridge follows the same rules as SuperBASIC
identifiers, etc. but limited to only 10 characters. It is a good idea to write the name of the
cartridge on the cartridge itself using one of the supplied sticky labels. You should always
keep at least one back-up copy of any program or data. Follow the instructions in the
Information section of the User Guide.

WARNING

If you FORMAT a cartridge which holds programs and/or data,

ALL the programs and/or data will be lost

SAVING PROGRAMS

The following program sets borders, 8 pixels wide, in red (code 2), in three windows
designated #0, #1, #2.

100 REMark Border

110 FOR k = 0 TO 2 : BORDER #k,8,2

You can save it on a microdrive by inserting a cartridge and typing:

SAVE mdv1_bord

The program will be saved in a Microdrive file called "bord".

CHECKING A CARTRIDGE

If you want to know what programs or data files are on a particular cartridge place it in
Microdrive 1 and type:

DIR mdv1_

The directory will be displayed on the screen. If the cartridge is in Microdrive 2 then type
instead:

DIR mdv2_

COPYING PROGRAMS AND FILES

Once a program is stored as a file on a Microdrive cartridge it can be copied to other files.
This is one way of making a backup copy of a Microdrive cartridge. You might copy all the
previous programs, and similar commands for other programs, onto another cartridge in
Microdrive 2 by typing:

COPY mdv1_bord TO mdv2_bord

DELETING A CARTRIDGE FILE

A file is anything, such as a program or data, stored on a cartridge. To delete a program
called "prog" you type:

DELETE mdv1_prog

LOADING PROGRAMS

A program can be loaded from a Microdrive cartridge by typing:

LOAD mdv2_bord

If the program loads correctly it will prove that both copies are good. You can test the
program by using:

LIST to list it.
RUN to run it.

Instead of using LOAD followed by RUN you can combine the two operations in one
command.

LRUN mdv2_bord

The program will load and execute immediately.

MERGING PROGRAMS

Suppose that you have two programs saved on Microdrive 1 as "prog1" and "prog2".

100 PRINT "First"

110 PRINT "Second"

If you type:

LOAD mdv1_prog1

followed by:

MERGE mdv1_prog2

The two programs will be merged into one. To verify this, type LIST and you should see:

100 PRINT "First"

110 PRINT "Second"

If you MERGE a program make sure that all its line numbers are different from the program
already in main memory. Otherwise it will overwrite some of the lines of the first program.
This facility becomes very valuable as you become proficient in handling procedures. It is
then quite natural to build a program up by adding procedures or functions to it.

GENERAL

Be careful and methodical with cartridges. Always keep one back-up copy and if you
suspect any problem with a cartridge or microdrive keep a second back-up copy.
Computer professionals very rarely lose data. They know that even with the best machines
or devices there will be occasional faults and they allow for this.

If you want to call a program by a particular name, say, square, it may be a good idea to
use names like sq1, sq2... for preliminary versions. When the program is in its final form
take at least two copies called square and the others may be deleted by re-formatting or by
some more selective method.

SELF TEST ON CHAPTER 5

You can score a maximum of 14 points from the following test. . Check your score with the
answers in the "Answers To Self Tests" section at the end of this Beginner's Guide.

1. Why are lower case letters preferred for program words which you choose?

2. What is the purpose of indenting?

3. What should normally guide your choice of identifiers for variables and loops?

4. Name three ways of editing a program in the computer's main memory (three points).

5. What should you remember to type at the end of every command or program line

when you enter it?

6. What should you normally type before you enter a program at the keyboard?

7. What must be at the beginning of every line to be stored as part of a program?

8. What must you remember to type to make a program execute?

9. What keyword enables you to put into a program information which has no effect on

the execution?

10. Which two keywords help you to store programs on and retrieve from cartridges? (two

points).

PROBLEMS ON CHAPTER 5

1. Re-write the following program using lower case letters to give a better presentation.

Add the words NEW and RUN. Use line numbers and the ENTER symbol just as you
would to enter and run a program. Use REMark to give the program a name.

LET TWO$ = "TWO"

LET FOUR$ = "FOUR"

LET SIX$ = TWO$ & FOUR$

PRINT LEN(six$)

Explain how two and four can produce 7.

2. Use indenting, lower case letters, NEW, RUN, line numbers and the ENTER symbol to

show how you would actually enter and run the following program:

REPEAT LOOP

LETTER_CODE = RND(65 TO 90)

LET LETTERS$ = CHR$(LETTER_CODE)

PRINT LETTER$

IF LETTER$ = 'Z' THEN EXIT LOOP

END REPEAT LOOP

3. Re-write the following program in better style using meaningful variable names and

good presentation. Write the program as you would enter it:

LET S = O

REPeat TOTAL

LET N = RND(1 TO 6)

PRINT ! N !

LET S = S + N

IF n = 6 THEN EXIT TOTAL

END REPeat TOTAL

PRINT S

 Decide what the program does and then enter and run it to check your decision.

CHAPTER 6 – ARRAYS AND FOR LOOPS

WHAT IS AN ARRAY

You know that numbers or character strings can become values of variables. You can
picture this as numbers or words going into internal pigeon holes or houses. Suppose for
example that four employees of a company are to be sent to a small village, perhaps
because oil has been discovered. The village is one of the few places where the houses
only have names and there are four available for rent. All the house names end with a
dollar symbol.

Westlea$ Lakeside$ Roselawn$ Oaktree$

The four employees are called:

 VAL HAL MEL DEL

They can be placed in the houses by one of two methods.

Program 1:

100 LET westlea$ = "VAL"

110 LET lakeside$ = "HAL"

120 LET roselawn$ = "MEL"

130 LET oaktree$ = "DEL"

140 PRINT ! westlea$! lakeside$! roselawn$! oaktree$

Program 2:

100 READ westlea$, lakeside$, roselawn$, oaktree$

110 PRINT ! westlea$! lakeside$! roselawn$! oaktree$

120 DATA "VAL", "HAL", "MEL", "DEL"

Westlea$

↓
VAL

Lakeside$

↓
HAL

Roselawn$

↓
MEL

Oaktree$

↓
DEL

As the amount of data gets larger the advantages of READ and DATA over LET become
greater. But when the data gets really numerous the problem of finding names for houses
gets as difficult as finding vacant houses in a small village.

The solution to this and many other problems of handling data lies in a new type of pigeon
hole or variable in which many may share a single name. However, they must be distinct
so each variable also has a number like numbered houses in the same street. Suppose
that you need four vacant houses in High Street numbered 1 to 4. In SuperBASIC we say
there is an array of four houses. The name of the array is high_st$ and the four houses
are to be numbered 1 to 4.

But you cannot just use these array variables as you can ordinary (simple)variables. You
have to declare the dimensions (or size) of the array first. The computer allocates space
internally and it needs to know how many string variables there are in the array and also
the maximum length of each string variable. You use a DIM statement thus:

DIM high_st$(4, 3)

 | |

 | ------ maximum length of string

 |

 --------- number of string variables

After the DIM statement has been executed the variables are available for use. It is as
though the houses have been built but are still empty. The four 'houses' share a common
name, high_st$, but each has its own number and each can hold up to three characters.

There are five programs below which all do the same thing: they cause the four 'houses' to
be 'occupied' and they PRINT to show that the 'occupation' has really worked. The final
method uses only four lines but the other four lead up to it in a way which moves all the
time from known ideas to new ones or new uses of old ones. The movement is also
towards greater economy.

If you understand the first two or three methods perfectly well you may prefer to move
straight onto methods 4 and 5. But if you are in any doubt, methods 1, 2 and 3 will help to
clarify things.

Program 1

100 DIM high_st$(4,3)

110 LET high_st$(l) = "VAL"

120 LET high_st$(2) = "HAL"

130 LET high_st$(3) = "MEL"

140 LET high st$(4) = "DEL"

150 PRINT ! high_st$(1) ! high st$(2) !

160 PRINT ! high_st$(3) ! high-st$(4) !

Program 2

100 DIM high st$(4,3)

110 READ high_st$(1),high_st$(2),high_st$(3),high_st$(4)

120 PRINT ! high_st$(1) ! high_st$(2) !

130 PRINT ! high_st$(3) ! high_st(4) !

140 DATA "VAL","HAL","MEL","DEL"

This shows how to economise on variable names but the constant repeating of high_st$ is
both tedious and the cause of the cluttered appearance of the programs. We can, again,
use a known technique - the REPeat loop to improve things further. We set up a counter,
number, which increases by one as the REPeat loop proceeds.

Program 3

100 RESTORE 190

110 DIM high_st$(4,3)

120 LET number = 0

130 REPeat houses

140 LET number = number + 1

150 READ high_st$(number)

160 IF num = 4 THEN EXIT houses

170 END REPeat houses

180 PRINT high_st$(1) ! high_st$(2) ! high_st$(3) !

high_st$(4)

190 DATA "VAL","HAL","MEL","DEL"

:
This special type of loop, in which something has to be done a certain number of times, is
well known. A special structure, called a FOR loop, has been invented for it. In such a loop
the count from 1 to 4 is handled automatically. So is the exit when all four items have been
handled.

Program 4

100 RESTORE 160

110 DIM high_st$(4,3)

120 FOR number = 1 TO 4

130 READ high_st$(number)

140 PRINT ! high_st$(number) !

150 END FOR number

160 DATA "VAL","HAL","MEL","DEL"

The output from all four programs is the same:

VAL HAL MEL DEL

Which proves that the data is properly stored internally in the four array variables:

high_st$ VAL HAL MEL DEL

Method 4 is clearly the best so far because it can deal equally well with 4 or 40 or 400
items by just changing the number 4 and adding more DATA items. You can use as many
DATA statements as you need.

In its simplest form the FOR loop is rather like the simplest form of REPeat loop. The two
can be compared:

100 REPeat greeting

110 PRINT 'Hello"

120 END REPeat greeting

100 FOR greeting = 1 TO 40

110 PRINT 'Hello"

120 END FOR greeting

Both these loops would work. The REPeat loop would print 'Hello' endlessly (stop it with
the BREAK sequence) and the FOR loop would print 'Hello' just forty times.

Notice that the name of the FOR loop is also a variable, greeting, whose value varies from
1 to 40 in the course of running the program. This variable is sometimes called the loop
variable or the control variable of the loop.

Note the structure of both loops takes the form:

Opening statement

 Content

Closing statement

However certain structures have allowable short forms for use when there are only one or
a few statements in the content of the loop. Short forms of the FOR loop are allowed so we
could write the program in the most economical form of all:

Program 5:

100 RESTORE 140 : CLS

110 DIM high st$(4,3)

120 FOR number = 1 TO 4 : READ high_st$(number)

130 FOR number = 1 TO 4 : PRINT ! high_st$(number) !

140 DATA "VAL", "HAL", "MEL", "DEL"

Colons serve as end of statement symbols instead of ENTER and the ENTER symbols of
lines 120 and 130 serve as END FOR statements.

There is an even shorter way of writing the above program. To print out the contents of the
array high_st$ we can replace line 130 by:

130 PRINT ! high_st$!

This uses an array slicer which we will discuss later in chapter 13.

We have introduced the concept of an array of string variables so that the only numbers
involved would be the subscripts in each variable name. Arrays may be string or numeric
and the following examples illustrate the numeric array.

Program 1:

Simulate the throwing of a pair of dice four hundred times. Keep a record of the number of
occurrences of each possible score from 2 to 12.

100 REMark DICE1

110 LET two = 0 :three = 0:four = 0:five = 0:six = 0

120 LET seven = 0:eight = 0:nine = 0:ten = 0 :eleven =

0:twelve = 0

130 FOR throw = 1 TO 400

140 LET die1 = RND(1 TO 6)

150 LET die2 = RND(1 TO 6)

160 LET score = die1 + die2

170 IF score = 2 THEN LET two = two + 1

180 IF score = 3 THEN LET three = three + 1

190 IF score = 4 THEN LET four = four + 1

200 IF score = 5 THEN LET five = five + 1

21O IF score = 6 THEN LET six = six + 1

220 IF score = 7 THEN LET seven = seven + 1

230 IF score = 8 THEN LET eight = eight + 1

240 IF score = 9 THEN LET nine = nine + 1

250 IF score = 10 THEN LET ten = ten + 1

26O IF score = 11 THEN LET eleven = eleven + 1

270 IF score = 12 THEN LET twelve = twelve + 1

280 END FOR throw

290 PRINT ! two ! three ! four ! five ! six

300 PRINT ! seven ! eight ! nine ! ten ! eleven ! twelve

In the above program we establish eleven simple variables to store the tally of the scores.
If you plot the tallies printed at the end you find that the bar chart is roughly triangular. The
higher tallies are for scores six, seven, eight and the lower tallies are for 2 and 12. As
every dice player knows, the reflects the frequency of the middle range of scores
(six,seven,eight) and the rarity of twos or twelves.

100 REMark Dice2

110 DIM tally(12)

120 FOR throw = 1 TO 400

130 LET die_1 = RND(1 TO 6)

140 LET die_2 = RND(1 TO 6)

150 LET score = die_1 + die_2

160 LET tally(score) = tally(score) + 1

170 END FOR throw

180 FOR number = 2 TO 12 : PRINT tally(number)

In the first FOR loop, using throw, the subscript of the array variable is score. This means
that the correct array subscript is automatically chosen for an increase in the tally after
each throw. You can think of the array, tally, as a set of pigeon-holes numbered 2 to 12.
Each time a particular score occurs the tally of that score is increased by throwing a stone
into the corresponding pigeon hole.

In the second (short form) FOR loop, the subscript is number. As the value of number
changes from 2 to 12 all the values of the tallies are printed.

Notice that in the DIM statement for a numeric array you need only declare the number of
variables required. There is no question of maximum length as there is in a string array.

If you have used other versions of BASIC you may wonder what has happened to the
NEXT statement. All SuperBASIC structures end with END something. That is consistent
and sensible but the NEXT statement has a part to play as you will see in later chapters.

SELF TEST ON CHAPTER 6

You can score a maximum of 16 points from the following test. Check your score with the
answers in the "Answers To Self Tests" section at the end of this Beginner's Guide.

1. Mention two difficulties which arise when the data needed for a program becomes

numerous and you try to handle it without arrays (two points).

2. If, in an array, ten variables have the same name then how do you know which is

which?

3. What must you do normally in a program, before you can use an array variable?

4. What is another word for the number which distinguishes a particular variable of an

array from the other variables which share its name?

5. Can you think of two ideas in ordinary life which correspond to the concept of an array

in programming?(two points)

6. In a REPeat loop, the process ends when some condition causes an EXIT statement

to be executed. What causes the process in a FOR loop to terminate?

7. A REPeat loop needs a name so that you can EXIT to its END properly. A FOR loop

also has a name, but what other function does a FOR loop name have?

8. What are the two phrases which are used to describe the variable which is also the

name of a FOR loop?(two points)

9. The values of a loop variable change automatically as a FOR loop is executed. Name

one possible important use of these values.

10. Which of the following do the long form of REPeat loops and the long form of FOR
loops have in common? For each of the four items either say that both have it or
which type of loop has it.

1. An opening keyword or statement.
2. A closing keyword or statement.
3. A loop name.
4. A loop variable or control variable. (four points)

PROBLEMS ON CHAPTER 6

1. Use a FOR loop to place one of four numbers 1,2,3,4 randomly in five array variables:

card(1), card(2), card(3), card(4), card(5)

It does not matter if some of the four numbers are repeated. Use a second FOR loop
to output the values of the five card variables.

2. Imagine that the four numbers 1,2,3,4 represent 'Hearts', 'Clubs', 'Diamonds', 'Spades'.

What extra program lines would need to be inserted to get output in the form of these
words instead of numbers?

3. Use a FOR loop to place five random numbers in the range 1 to 13 in an array of five

variables:

card(1), card(2) card(3), card(4) and card(5)

Use a second FOR loop to output the values of the five card variables.

4. Imagine that the random numbers generated in problem 1 represent cards. Write down

the extra statements that would cause the following output:

Number Output

1 the word ‘Ace’

2 to 10 the actual number

11 the word ‘Jack’

12 the word ‘Queen’

13 the word ‘King’

CHAPTER 7 – SIMPLE PROCEDURES

If you were to try to write computer programs to solve complex problems you might find it
difficult to keep track of things. A methodical problem solver therefore divides a large or
complex job into smaller sections or tasks, and then divides these tasks again into smaller
tasks, and so on until each can be be easily tackled.

This is similar to the arrangement of complex human affairs. Successful government
depends on a delegation of responsibility. The Prime Minister divides the work amongst
ministers, who divide it further through the Civil Service until tasks can be done by
individuals without further division. There are complicating features such as common
services and interplay between the same and different levels, but the hierarchical structure
is the dominant one.

A good programmer will also work in this way and a modern language like SuperBASIC
which allows properly named, well defined procedures will be much more helpful than older
versions which do not have such features.

The idea is that a separately named block of code should be written for a particular task. It
doesn't matter where the block of code is in the program. If it is there somewhere,the use
of its name will:

activate the code
return control to the point in the program immediately after that use.

If a procedure, square, draws a square the scheme is as shown below:

In practice the separate tasks within a job can be identified and named before the definition
code is written. The name is all that is needed in calling the procedure so the main outline
of the program can be written before all the tasks are defined.

Alternatively if it is preferred, the tasks can be written first and tested. If it works you can
then forget the details and just remember the name and what the procedure does.

Example

The following example could quite easily be written without procedures but it shows they
can be used in a reasonably simple context. Almost any task can be broken down in a
similar fashion which means that you never have to worry about more than, say five to

thirty lines at any one time. If you can write thirty-line programs well and handle
procedures, then you have the capability to write three-hundred-line programs.

You can produce ready made buzz phrases for politicians or others who wish to give an
impression of technological fluency without actually knowing anything. Store the following
words in three arrays and then produce ten random buzz phrases.

adjec1$ adjec2$ noun$

Full fifth-generation systems

Systematic knowledge-based machines

Intelligent compatible computers

Controlled cybernetic feedback

Automated user-friendly transputers

Synchronised parallel micro-chips

Functional learning capability

Optional adaptable programming

Positive modular packages

Balanced structured databases

Integrated logic-oriented spreadsheets

Coordinated file-oriented word-processors

Sophisticated Standardised objectives

ANALYSIS

We will write a program to produce ten buzzword phrases. The stages of the program are:

1 Store the words in three string arrays.

2 Choose three random numbers which will be the subscripts of the array variables.

3 Print the phrase.

4 Repeat 2 and 3 ten times.

DESIGN - VARIABLES

We identify three arrays of which the first two will contain adjectives or words used as
adjectives - describing words. The third array will hold the nouns. There are 13 words in
each section and the longest word has 16 characters including a hyphen.

Array Purpose

adjec1$(13,12) first adjectives
adjec2$(13,16) second adjectives
noun$(13,15) nouns

DESIGN – PROCEDURES

We use three procedures to match the jobs identified.

store_data - stores the three sets of thirteen words.
get_random - gets three random numbers in range 1 to 13.
make_phrase - prints a phrase.

DESIGN - MAIN PROGRAM

This is very simple because the main work is done by the procedures.

Declare (DIM) the arrays
Store_data
FOR ten phrases
get_random
make_phrase
END

DESIGN - PROGRAM

100 REMark ************

110 REMark * Buzzword *

120 REMark ************

130 DIM adjec1$(13,12), adjec2$(13,16), noun$(13,15)

140 store_data

150 FOR phrase = 1 TO 10

160 get_random

170 make_phrase

180 END FOR phrase

190 REMark **************************

200 REMark * Procedure Definitions *

210 REMark **************************

220 DEFine PROCedure store_data

230 REMark *** procedure to store the buzzword data ***

240 RESTORE 420

250 FOR item = 1 TO 13

260READ adjec1$(item), adjec2$(item), noun$(item)

270 END FOR item

280 END DEFine

290 DEFine PROCedure get_random

300 REMark *** procedure to select the phrase ***

310 LET ad1 = RND(1 TO 13)

320 LET ad2 = RND(1 TO 13)

330 LET n = RND(1 TO 13)

340 END DEFine

350 DEFine PROCedure make_phrase

360 REMark *** procedure to print out the phrase ***

370 PRINT ! adjec!$(ad1) ! adjec2$(ad2) ! noun$(n)

380 END DEFine

390 REMark ****************

400 REMark * Program Data *

410 REMark ****************

420 DATA "Full", "fifth-generation", "systems"

430 DATA "Systematic", "knowledge-based", "machines"

440 DATA 'Intelligent","compatible", "computers"

450 DATA "Controlled", "cybernetic", "feedback"

460 DATA "Automated", "user-friendly", "transputers"

470 DATA "Synchronised", "parallel", "micro-chips"

480 DATA "Functional", "Learning", "capability'

490 DATA "Optional", "adaptable", "programming"

500 DATA "Positive" , "modular" , "packages"

510 DATA "Balanced" , "structured", "databases"

520 DATA "Integrated", "logic-oriented", "spreadsheets"

530 DATA "Coordinated", "file-oriented", "word-processors"

540 DATA "Sophisticated", "standardised", "objectives"

Automated fifth-generation capability

Functional learning packages

Full parallel objectives

Positive user-friendly spreadsheets

Intelligent file-oriented capability

Synchronised cybernetic transputers

Functional logic-oriented micro-chips

Positive parallel feedback

Balanced learning databases

Controlled cybernetic objectives

PASSING INFORMATION TO PROCEDURES

Suppose we wish to draw squares of various sizes and various colours in various positions

on the scale graphics screen.

If we define a procedure, "square", to do this it will require four items of information:

length of one side
colour (colour code)
position (across and up)

The square's position is determined by giving two values, across and up, which fix the
bottom left hand corner of the square as shown below.

The colour of the square is easily fixed but the square itself uses the values of side and ac
and up as follows.

200 DEFine PROCedure square(side,ac,up)

210 LINE ac,up TO ac+side,up

220 LINE TO ac+side,up+side

230 LINE TO ac,up+side TO ac,up

240 END DEFine

In order to make this procedure work values of side, ac and up must be provided. These
values are provided when the procedure is called. For example you could add the following
main program to get one green square of side 20.

100 PAPER 7:CLS

110 INK 4

120 square 20,50,50

The numbers 20,50,50 are called parameters and they are passed to the variables named
in the procedure definition thus:

The numbers 20,50,50 are called actual parameters. They are numbers in this case but
they could be variables or expressions. The variables side, ac, up are called formal
parameters. They must be variables because they 'receive' values.

A more interesting main program uses the same procedure to create a random pattern of
coloured pairs of squares. Each pair of squares is obtained by offsetting the second one
across and up by one-fifth of the side length thus:

Assuming that the procedure square is still present at line 200 then the following program
will have the classical effect.

100 REMark Squares Pattern

110 PAPER 7 : CLS

120 FOR pair = 1 TO 20

130 INK RND(5)

140 LET side = RND(10 TO 20)

150 LET ac = RND(50) : up = RND(70)

160 square side,ac,up

170 LET ac=ac+side/5 : up = up+side/5

180 square side,ac,up

190 END FOR pair

The advantages of procedures are:

1. You can use the same code more than once in the same program or in others.

2. You can break down a task into sub-tasks and write procedures for each sub-task.

This helps the analysis and design.

3. Procedures can be tested separately. This helps the testing and debugging.

4. Meaningful procedure names and clearly defined beginnings and ends help to

make a program readable.

When you get used to properly named procedures with good parameter facilities, you
should find that your problem-solving and programming powers are greatly enhanced.

SELF TEST ON CHAPTER 7

You can score a maximum of 14 points from the following test. Check your score with the
"Answers To Self Tests" section at the back of this Beginner's Guide.

1. How do we normally tackle the problem of great size and complexity in human affairs?

2. How can this principle be applied in programming?

3. What are the two most obvious features of a simple procedure definition? (two points)

4. What are the two main effects of using a procedure name to 'call' the procedure? (two

points)

5. What is the advantage of using procedure names in a main program before the

procedure definitions are written?

6. What is the advantage of writing a procedure definition before using its name in a main

program?

7. How can the use of procedures help a 'thirty-line-programmer' to write much bigger

programs?

8. Some programs use more memory in defining procedures, but in what circumstances

do procedures save memory space?

9. Name two ways by which information can be passed from main program to a

procedure. (two points)

10. What is an actual parameter?

11. What is a formal parameter?

PROBLEMS ON CHAPTER 7

1. Write a procedure which outputs one of the four suits: 'Hearts', 'Clubs: 'Diamonds' or

'Spades'. Call the procedure five times to get five random suits.

2. Write another program for problem 1 using a number in the range 1 to 4 as a

parameter to determine the output word. If you have already done this, then try writing
the program without parameters.

3. Write a procedure which will output the value of a card that is a number in the range 2

to 10 or one of the words 'Ace', 'Jack' 'Queen', 'King'.

4. Write a program which calls this procedure five times so that five random values are

output.

5. Write the program of problem 3 again using a number in the range 1 to 13 as a

parameter to be passed to the procedure. If this was the method you used first time,
then try writing the program without parameters.

6. Write the most elegant program you can, using procedures, to output four hands of five

cards each. Do not worry about duplicate cards. You can take elegance to mean an
appropriate mixture of readability shortness and efficiency. Different people and/or
different circumstances will place different importance on these three qualities which
sometimes work against each other.

CHAPTER 8 – FROM BASIC TO SUPERBASIC

If you are familiar with one of the earlier versions of BASIC you may find it possible to omit
the first seven chapters and use this chapter instead as a bridge between what you know
already and the remaining chapters. If you do this and still find areas of difficulty. it may be
helpful to backtrack a little into some of the earlier chapters.

If you have worked through the earlier chapters this one should be easy reading. You may
find that, as well as introducing some new ideas, it gives an interesting slant on the way
BASIC is developing. Apart from its program structuring facilities SuperBASIC also pushes
forward the frontiers of good screen presentation, editing, operating facilities and graphics.
In short it is a combination of user-friendliness and computing power which has not existed
before.

So, when you make the transition from BASIC to SuperBASIC you are moving not only to a
more powerful, more helpful language, you are also moving into a remarkably advanced
computing environment.

We will now discuss some of the main features of SuperBASIC and some of the features
which distinguish it from other BASICs.

ALPHABETIC COMPARISONS

The usual simple arithmetic comparisons are possible. You can write:

LET pet1$ = "CAT"

LET pet2$ = "DOG"

IF pet1$ < pet2$ THEN PRINT "Meow"

The output will be Meow because in this context the symbol < means:

earlier (nearer to A in the alphabet)

SuperBASIC makes comparisons sensible. For example you would expect:

'cat' to come before 'DOG'

and

'ERD98L' to come before 'ERD746L'

A simplistic approach, blindly using internal character coding, would give the 'wrong' result
in both the above cases but try the following program which finds the 'earliest' of two
character strings.

100 INPUT item1$, item2$

110 IF item1$ < item2$ THEN PRINT item1$

120 IF item1$ = item2$ THEN PRINT "Equal"

130 IF item1$ > item2$ THEN PRINT item2$

INPUT OUTPUT

cat dog cat
cat DOG cat
ERD98L ERD746L ERD98L
ABC abc ABC

The Concept Reference Guide section will give full details about the way comparisons of
strings are made in SuperBASIC.

VARIABLES AND NAMES - IDENTIFIERS

Most BASICs have numeric and string variables. As in other BASICs the distinguishing
feature of a string variable name in SuperBASIC is the dollar sign on the end. Thus:

numeric: count string: word$
 sum high_st$
 total day_of_week$

You may not have met such meaningful variable names before though some of the more
recent BASICs do allow them. The rules for identifiers in SuperBASIC are given in the
Concept Reference Guide. The maximum length of an identifier is 255 characters. Your
choice of identifiers is a personal one. Sometimes the longer ones are more helpful in
conveying to the human reader what a program should do. But they have to be typed and,
as in ordinary English, spade is more sensible than horticultural earth-turning implement.
Shorter words are preferred if they convey the meaning but very short words or single
letters should be used sparingly. Variable names like X, Z, P3, Q2 introduce a level of
abstraction which most people find unhelpful.

INTEGER VARIABLES

SuperBASIC allows integer variables which take only whole-number values. We
distinguish these with a percentage sign thus:

count%
number%
nearest_pound%

There are now two kinds of numeric variable. We call the other type, which can take whole
or fractional values, floating point. Thus you can write:

LET price = 9

LET cost = 7.31

LET count% = 13

But if you write:

LET count% = 5.43

the value of count% will become 5. On the other hand:

LET count% = 5.73

will cause the value of count% to be 6. You can see that SuperBASIC does the best it can,
rounding off to the nearest whole number.

COERCION

The principle of always trying to be intelligently helpful,rather than give an error message
or do something obviously unwanted, is carried further. For example, if a string variable
mark$ has the value

'64'

then:

LET score = mark$

will produce a numeric value of 64 for score. Other versions of BASIC would be likely to
halt and say something like:

'Type mis-match'

or 'Nonsense in BASIC'

If the string cannot be converted then an error is reported.

LOGICAL VARIABLES AND SIMPLE PROCEDURES

There is one other type of variable in SuperBASIC, or rather the SuperBASIC system
makes it seem so. Consider the SuperBASIC statement:

IF windy THEN fly_kite

In other BASICs you might write:

IF w=1 THEN GOSUB 300

In this case w=1 is a condition or logical expression which is either true or false. If it is true
then a subroutine starting at line 300 would be executed. This subroutine may deal with
kite flying but you cannot tell from the above line. A careful programmer would write:

IF w=1 THEN GOSUB 300 : REM fly_kite

to make it more readable. But the SuperBASIC statement is readable as it stands. The
identifier windy is interpreted as true or false though it is actually a floating point variable. A
value of 1 or any non-zero value is taken as true. Zero is taken as false. Thus the single
word, windy, has the same effect as a condition of logical expression.

The other word, fly_kite, is a procedure. It does a job similar to, but rather better than,
GOSUB 300.

The following program will convey the idea of logical variables and the simplest type of
named procedure.

100 INPUT windy

110 IF windy THEN fly_kite

120 IF NOT windy THEN tidy_shed

130 DEFine PROCedure fly_kite

140 PRINT "See it in the air."

150 END DEFine

160 DEFine PROCedure tidy_shed

170 PRINT "Sort out rubbish."

180 END DEFine

INPUT OUTPUT

0 Sort out rubbish
1 See it in the air
2 See it in the air
-2 See it in the air

You can see that only zero is taken as meaning false. You would not normally write
procedures with only one action statement, but the program illustrates the idea and syntax
in a very simple context. More is said about procedures later in this chapter.

LET STATEMENTS

In SuperBASIC LET is optional but we use it in this manual so that there will be less
chance of confusion caused by the two possible uses of =. The meanings of = in:

LET count = 3

and in

IF count = 3 THEN EXIT

are different and the LET helps to emphasise this. However if there are two or a few LET
statements doing some simple job such as setting initial values, an exception may be
made.

For example:

100 LET first = 0

110 LET second = 0

120 LET third = 0

may be re-written as

100 LET first = 0 : second = 0 : third = 0

without loss of clarity or style. It is also consistent with the general concept of allowing
short forms of other constructions where they are used in simple ways.

The colon : is a valid statement terminator and may be used with other statements besides
LET.

THE BASIC SCREEN

In a later chapter we will explain how other graphics facilities, such as drawing circles, can
be handled but here we outline the pixel-oriented features. There are two modes which
may be activated by any of the following:

Low resolution
MODE 256
MODE 8

8 Colour Mode

256 pixels across, 256 down

High resolution
MODE 512
MODE 4

4 Colour Mode

512 pixels across, 256 down

In both modes pixels are addressed by the range of numbers:

 0 - 511 across

and 0 - 255 down

Since mode 8 has only half the number of pixels across the screen as mode 4, mode 8
pixels are twice as wide as mode 4 pixels and so in mode 8 each pixel can be specified by
two coordinates. For example:

0 or 1 2 or 3 510 or 511

It also means that you use the same range of numbers for addressing pixels irrespective of
the mode. Always think 0-511 across and 0-255 down.

If you are using a television then not all the pixels may be visible.
The colours available are:

MODE 256 Code MODE 512

Black 0 Black
Blue 1
Red 2 Red
Magenta 3
Green 4 Green
Cyan 5
Yellow 6 white
white 7

You may find the following mnemonic helpful in remembering the codes:

 Bonny Babies Really Make Good Children, You Wonder

In the high resolution mode each colour can be selected by one of two codes. You will see
later how a startling range of colour and stipple (texture) effects can be produced if you
have a good quality colour monitor.

Some of the screen presentation keywords are as follows:

INK colour foreground colour

BORDER width, colour draw border at edge of screen or window

PAPER colour background colour

BLOCK width, height, across, down, colour colour a rectangle which has its top left

hand corner at position across, down

SCREEN ORGANISATION

When you switch on your QL the screen display is split into three areas called windows as
shown below. Note that in order to fit these windows into the area covered by a television
screen, some pixels around the border are not used in Television mode.

The windows are identified by #0, #1 and #2 so that you can relate various effects to
particular windows. For example:

CLS

will clear window #1 (the system chooses) so if you want the left hand area cleared you
must type:

CLS #2

If you want a different paper (background colour) type for green:

PAPER 4 : CLS

or

PAPER #2,4 : CLS #2

If you want to clear window #2 to the background colour green.

The numbers #0, #1 and #2 are called channel numbers. In this particular case they
enable you to direct certain effects to the window of your choice. You will discover later
that channel numbers have many other uses but for the moment note that all of the
following statements may have a channel number. The third column shows the default
channel - the one chosen by the system if you do not specify one.

Note that windows may overlap. If you use a TV screen the system automatically overlaps
windows #1 and #2 so that more character positions per line are available for program
listings.

KEYWORD EFFECT DEFAULT

AT Character position #1
BLOCK Draws block #1
BORDER Draw border #1
CLS Clear screen #1
CSIZE Character size #1
CURSOR Position cursor #1
FLASH Causes/cancels flashing #1
INK Foreground colour #1
OVER Effect of printing and graphics #1
PAN Moves screen sideways #1
PAPER Background colour #1
RECOL Changes colour #1
SCROLL Moves screen vertically #1
STRIP Background for printing #1
UNDER Underlines #1
WINDOW Changes existing window #1
LIST Lists program #2
DIR Lists directory #1
PRINT Prints characters #1
INPUT Takes keyboard input #1

Statements or direct commands appear in window #0.

For more details about the syntax or use of these keywords see other parts of the manual.

RECTANGLES AND LINES

The program below draws a green rectangle in 256 mode on red paper with a yellow
border one pixel wide. The rectangle has its top left corner at pixel co-ordinates 100,100
(see QL Concepts). Its width is 80 units across (40 pixels) and its height is 20 units down
(20 pixels).

100 REMark Rectangle

110 MODE 256

120 BORDER 1,6

130 PAPER 2 : CLS

140 BLOCK 80,20,100,100,4

You have to be a bit careful in mode 256 because across values range from 0 to 511 even
though there are only 256 pixels. We cannot say that the block produced by the above
program is 80 pixels wide so we say 80 units.

INPUT AND OUTPUT

SuperBASIC has the usual LET, INPUT, READ and DATA statements for input. The
PRINT statement handles most text output in the usual way with the separators:

, tabulates output
; just separates - no formatting effect
\ forces new line
! normally provides a space but not at the start of line. If an item will

not fit at the end of a line it performs a new line operation.
TO Allows tabulation to a designated column position.

You will be familiar with two types of repetitive loop exemplified as follows:

(a) Simulate 6 throws of an ordinary six-sided die

100 FOR throw = 1 TO 6

110 PRINT RND(1 TO 6)

120 NEXT throw

(b) Simulate throws of a die until a six appears.

100 die = RND(1 TO 6)

110 PRINT die

120 IF die <> 6 THEN GOTO 10

Both of these programs will work in SuperBASIC but we recommend the following instead.
They do exactly the same jobs. Although program (b) is a little more complex there are
good reasons for preferring it.

Program (a)

100 FOR throw = 1 TO 6

110 PRINT RND(1 TO 6)

120 END FOR throw

Program (b)

100 REPeat throws

110 die = RND(1 TO 6)

120 PRINT die

130 IF die = 6 THEN EXIT throws

140 END REPeat throws

It is logical to provide a structure for a loop which terminates on a condition (REPeat loops)
as well as those which are controlled by a count.

The fundamental REPeat structure is:

REPeat identifier
 statements
END REPeat identifier

The EXIT statement can be placed anywhere in the structure but it must be followed by an
identifier to tell SuperBASIC which loop to exit; for example:

EXIT throws

would transfer control to the statement after

END REPeat throws.

This may seem like a using a sledgehammer to crack the nut of the simple problem
illustrated. However the REPeat structure is very powerful. It will take you a long way.

If you know other languages you may see that it will do the jobs of both REPEAT and
WHILE structures and also cope with other more awkward, situations.
The SuperBASIC REPeat loop is named so that a correct clear exit is made. The FOR
loop, like all SuperBASIC structures, ends with END, and its name is given for reasons
which will become clear later.

You will also see later how these loop structures can be used in simple or complex
situations to match exactly what you need to do. We will mention only three more features
of loops at this stage. They will be familiar if you are an experienced user of BASIC.

The increment of the control variable of a FOR loop is normally 1 but you can make it other
values by using the STEP keyword. As the examples show.

Example (i).

100 FOR even = 2 TO 10 STEP 2

110 PRINT ! even !

120 END FOR even

output is 2 4 6 8 10

Example (ii).

100 FOR backwards = 9 TO 1 STEP -1

110 PRINT ! backwards !

120 END FOR backwards

output is 9 8 7 6 5 4 3 2 1

The second feature is that loops can be nested. You may be familiar with nested FOR
loops. For example the following program outputs four rows of ten crosses.

100 REMark Crosses

110 FOR row = 1 TO 4

120 PRINT 'Row number' ! row

130 FOR cross = 1 TO 10

140 PRINT ! 'X' !

150 END FOR cross

160 PRINT

170 PRINT \ 'End of row number' ! row

180 END FOR row

output is:

Row number 1

X X X X X X X X X X

End of row number 1

Row number 2

X X X X X X X X X X

End of row number 2

Row number 3

X X X X X X X X X X

End of row number 3

Row number 4

X X X X X X X X X X

End of row number 3

A big advantage of SuperBASIC is that it has structures for all purposes, not just FOR
loops, and they can all be nested one inside the other reflecting the needs of a task. We
can put a REPeat loop in a FOR loop. The program below produces scores of two dice in
each row until a seven occurs, instead of crosses.

100 REMark Dice rows

110 FOR row = 1 TO 4

120 PRINT 'Row number '! row

130 REPeat throws

140 LET die1 = RND(1 TO 6)

150 LET die2 = RND(1 TO 6)

160 LET score = die1 + die2

170 PRINT ! score !

180 IF score = 7 THEN EXIT throws

190 END REPeat throws

200 PRINT \'End of row '! row

210 END FOR row

sample output:

Row number 1

8 11 6 3 7

End of row number 1

Row number 2

4 6 2 9 4 5 12 7

End of row number 2

Row number 3

7

End of row number 3

Row number 4

6 2 4 9 9 7

End of row number 4

The third feature of loops in SuperBASIC allows more flexibility in providing the range of
values in a FOR loop. The following program illustrates this by printing all the divisible
numbers from 1 to 20. (A divisible number is divisible evenly by a number other than itself
or 1.)

100 REMark Divisible numbers

110 FOR num = 4,6,8, TO 10,12,14 TO 16,18, 20

120 PRINT ! num !

130 END FOR num

More will be said about handling repetition in a later chapter but the features described
above will handle all but a few uncommon or advanced situations.

DECISION MAKING

You will have noticed the simple type of decision:

IF die = 6 THEN EXIT throws

This is available in most BASICs but SuperBASIC offers extensions of this structure and a
completely new one for handling situations with more than two alternative courses of
action.

However, you may find the following long forms of IF..THEN useful. They should explain
themselves.

(i)

100 REMark Long form IF. ..END IF

110 LET sunny = RND(0 TO 1)

120 IF sunny THEN

130 PRINT 'Wear sunglasses'

140 PRINT 'Go for walk'

150 END IF

(ii)

100 REMark Long form IF...ELSE...END IF

110 LET sunny = RND(0 TO 1)

120 IF sunny THEN

130 PRINT 'Wear sunglasses'

140 PRINT 'Go for walk'

150 ELSE

160 PRINT 'Wear coat'

170 PRINT 'Go to cinema'

180 END IF

The separator THEN, is optional in long forms or it can be replaced by a colon in short
forms. The long decision structures have the same status as loops. You can nest them or
put other structures into them. When a single variable appears where you expect a
condition the value zero will be taken as false and other values as true.

SUBROUTINES AND PROCEDURES

Most BASICs have a GOSUB statement which may be used to activate particular blocks of
code called subroutines. The GOSUB statement is unsatisfactory in a number of ways and
SuperBASIC offers properly named procedures with some very useful features.

Consider the following programs both of which draw a green 'square' of side length 50
pixel screen units at a position 200 across 100 down on a red background.

 (a) Using GOSUB

100 LET colour = 4 : background = 2

110 LET across = 20

120 LET down = 100

130 LET side = 50

140 GOSUB 170

150 PRINT 'END'

160 STOP

170 REMark Subroutine to draw square

180 PAPER background : CLS

190 BLOCK side, side, across, down, colour

200 RETurn

(b) Using a procedure with parameters

100 square 4, 50, 20, 100, 2

110 PRINT 'END'

120 DEFine PROCedure

square(colour,side,across,down,background)

130 PAPER background : CLS

140 BLOCK side, side, across, down, colour

150 END DEFine

In the firs t program the values of colour, across, down, side are fixed by LET statements
before the GOSUB statement activates lines 180 and 190 Control is then sent back by the
RETURN statement.

In the second program the values are given in the first line as parameters in the procedure
call, square, which activates the procedure and at the same time provides the values it
needs.

In its simplest form a procedure has no parameters. It merely separates a particular piece
of code, though even in this simpler use the procedure has the advantage over GOSUB
because it is properly named and properly isolated into a self contained unit.

The power and simplifying effects of procedures are more obvious as programs get larger.
What procedures do as programs get larger is not so much make programming easier as
prevent it from getting harder with increasing program size. The above example just
illustrates the way they work in a simple context.
Examples

The following examples indicate the range of vocabulary and syntax of SuperBASIC which
has been covered in this and earlier chapters, and will form a foundation on which the
second part of this manual will build.

The letters of a palindrome are given as single items in DATA statements. The terminating
item is an asterisk and you assume no knowledge of the number of letters in the
palindrome. READ the letters into an array and print them backwards. Some palindromes
such as "MADAM I'M ADAM" only work if spaces and punctuation are ignored. The one
used here works properly.

100 REMark Palindromes

110 DIM text$(30)

120 LET text$ = FILL$ (' ',30)

130 LET count = 30

140 REPeat get_letters

150 READ character$

160 IF character$ = '*' THEN EXIT get_letters

170 LET count = count-1

180 LET text$(count) = character$

190 END REPeat get_letters

200 PRINT text$

210 DATA 'A','B','L','E','W','A','S','I','E','R'

220 DATA 'E','I','S','A','W','E','L','B','A','*'

The following program accepts as input numbers in the range 1 to 3999 and converts them
into the equivalent In Roman numerals It does not generate the most elegant form. It
produces IIII rather than IV.

100 REMark Roman numbers

110 INPUT number

120 RESTORE 210

130 FOR type = 1 TO 7

140 READ letter$, value

150 REPeat output

160 IF number < value : EXIT output

170 PRINT letter$;

180 LET number = number - value

190 END REPeat output

200 END FOR type

210 DATA 'M',1000,'D',500,'C',100,'L',50,'X',10,'V',5,'I',1

You should study the above examples carefully using dry runs if necessary until you are
sure that you understand them.

CONCLUSION

In SuperBASIC full structuring features are provided so that program elements either follow
in sequence or fit into one another neatly. All structures must be identified to the system
and named. There are many unifying and simplifying features and many extra facilities.

Most of these are explained and illustrated in the remaining chapters of this manual, which
should be easier to read than the Keyword and Concept Reference sections. However, it is
easier to read because it does not give every technical detail and exhaust every topic
which it treats. There may, therefore, be a few occasions when you need to consult the
reference sections. On the other hand some major advances are discussed in the following
chapters. Few readers will need to use all of them and you may find it helpful to omit
certain parts, at least on first reading.

CHAPTER 9 - DATA TYPES VARIABLES AND IDENTIFIERS

You will have noticed that a program (a sequence of statements) usually gets some data to
work on (input) and produces some kind of results (output). You will also have understood
that there are internal arrangements for storing this data. In order to avoid unnecessary
technical explanations we have suggested that you imagine pigeon holes and that you
choose meaningful names for the pigeon holes. For example, if it is necessary to store a
number which represents the score from simulated dice-throws you imagine a pigeon hole
named score which might contain a number such as 8.

Internally the pigeon holes are numbered and the system maintains a dictionary which
connects particular names with particular numbered pigeon holes. We say that the name,
score, points to its particular pigeon-hole (by means of the internal dictionary).

The whole arrangement is called a variable.

What you see is the word score. We say that this word, score is an identifier It is what we
see and it identifies the concept we need, in this case the result, 8, of throwing a pair of
dice. Because the identifier is what we see it becomes the thing we talk or write or think
about. We write about score and its value at any particular moment.

There are four simple data types called floating point, integer string and logical and these
are explained below We talk about data types rather than variable types because data can
occur on its own, for example 3.4 or 'Blue hat' as the value of a variable. But if you
understand the different types of variables, you must also understand the different types of
data.

IDENTIFIERS AND VARIABLES

1. A SuperBASIC identifier must begin with a letter and is a sequence of:

upper or lower case letters
digits or underscore

2. An identifier may be up to 255 characters in length so there is no effective limit in

practice.

3. An identifier cannot be the same as a keyword of SuperBASIC.

4. An integer variable name is an identifier with % on the end.

5. A string variable name is an identifier with $ on the end.

6. No other identifiers must use the symbols % and $.

7. An identifier should usually be chosen so that it means something to a human reader

but for SuperBASIC it does not have any particular meaning other than that it identifies
certain things.

FLOATING POINT VARIABLES

Examples of the use of floating point variables are:

100 LET days = 24
110 LET sales = 3649.84
120 LET sales_per_day = sales/days
130 PRINT sales_per_day

The value of a floating point variable may be anything in the range:

± 10
-615

to ± 10
+615

 with 8 significant figures.

Suppose in the above program sales were, exceptionally only 3p. Change line 110 to:

110 LET sales = 0.03

This system will change this to:

110 LET sales = 3E-2

To interpret this, start with 3 or 3.0 and move the decimal point -2 places, i.e. two places
left. This shows that:

3E-2 is the same as 0.03

After running the program, the average daily sales are:

1.25E-3 which is the same as 0.00125

Numbers with an E are said to be in exponent form:

(mantissa) E (exponent) = (mantissa) x 10 to the power (exponent)

INTEGER VARIABLES

Integer variables can have only whole number values in the range -32678 to 32768. The
following are examples of valid integer variable names which must end with %.

LET count% = 10

LET six_tally% = RND(10)

LET number_3% = 3

The only disadvantage of integer variables, when whole numbers are required, is the
slightly misleading % symbol on the end of the identifier. It has nothing to do with the

concept of percentage. It is just a convenient symbol tagged on to show that the variable is
an integer.

NUMERIC FUNCTIONS

Using a function is a bit like making an omelette. You put in an egg which is processed
according to certain rules (the recipe) and get out an omelette. For example the function
INT takes any number as input and outputs the whole number part. Anything which is input
to a function is called a parameter or argument. INT is a function which gives the integer
part of an expression. You may write:

PRINT INT(5.6)

and 5 would be the output. We say that 5.6 is the parameter and the function returns the
value 5. A function may have more than one parameter. You have already met:

RND(1 TO 6)

which is a function with two parameters. But functions always return exactly one value.
This must be so because you can put functions into expressions. For example:

PRINT 2 * INT(5.6)

would produce the output 10. It is an important property of functions that you can use them
in expressions. It follows that they must return a single value which is then used in the
expression. INT and RND are system functions: they come with the system, but later you
will see how to write your own.

The following examples show common uses of the INT function.

100 REMark Rounding

110 INPUT decimal

120 PRINT INT(decimal + 0.5)

In the example you input a decimal fraction and the output is rounded. Thus 4.7 would
become 5 but 4.3 would become 4.

You can achieve the same result using an integer variable and coercion.

Trigonometrical functions will be dealt with in a later section but other common numeric
functions are given in the list below.

Function Effect Examples Returned values

ABS

Absolute or unsigned value

ABS(7)
ABS(-4.3)

7
4.3

INT
Integer part of a floating point
number

INT(2.4)
INT(0.4)

2
0

INT(-2.7) -3

SQRT Square root
SQRT(2)
SQRT(16)
SQRT(2.6)

1.414214
4
1.612452

There is a way of computing square roots which is easy to understand. To compute the
square root of 8 first make a guess. It doesn't matter how bad the guess maybe. Suppose
you simply take half of 8 as the first guess which is 4.

Because 4 is greater than the square root of 8 then 8/4 must be less than it. The reverse is
also true. If you had guessed 2 which is less than the square root then 8/2 must be greater
than it.

It follows that if we take any guess and computer number/guess we have two numbers,
one too small and one too big. We take the average of these numbers as our next
approximation and thus get closer to the correct answer.

We repeat this process until successive approximations are so close as to make little
difference:

100 REMark Square Roots

110 LET number = 8

120 LET approx = number/2

130 REPeat root

140 LET newval = (approx + number/approx)/2

150 IF newval == approx THE EXIT root

160 LET approx = newval

170 END REPeat root

180 PRINT 'Square root of' ! number ! 'is' ! newval

sample output:

Square root of 8 is 2.828427

Notice that the conditional EXIT from the loop must be in the middle. The traditional
structures do not cope with this situation as well as SuperBASIC does. The == sign in line
150 means "approximately equal to", that is, equal to within .0000001 of the values being
compared.

NUMERIC OPERATIONS

SuperBASIC allows the usual mathematical operations. You may notice that they are like
functions with exactly two operands each. It is also conventional in these cases to put an
operand on each side of the symbol. Sometimes the operation is denoted by a familiar
symbol such as + or *. Sometimes the operation is denoted by a keyword like DIV or MOD
but there is no real difference. Numeric operations have an order of priority. For example,
the result of:

PRINT 7 + 3*2

is 13 because the multiplication has a higher priority. However:

PRINT (7+3)*2

will output 20, because brackets over-ride the usual priority. As you will see later so many
things can be done with SuperBASIC expressions that a full statement about priority
cannot be made at this stage (see the Concept Reference Guide if you wish) but the
operations we now deal with have the following order of priority:

highest - raising to a power
multiplication and division (including DIV, MOD)

lowest - add and subtract

The symbols + and - are also used with only one operand which simply denotes positive or
negative. Symbols used in this way have the highest priority of all and can only be over-
ridden by the use of brackets.

Finally if two symbols have equal priority the leftmost operation is performed first so that:

PRINT 7-2 + 5

will cause the subtraction before the addition. This might be important if you should ever
deal with very large or very small numbers.

Operation Symbol Examples Results Note

Add

+

7+6.6

13.6

Subtract - 7-6.6 0.4
Multiply * 3*2.1

2.1*(-3)
6.3
-6.3

Divide / 7/2
-17/5

3.5
-3.4

Do not divide by zero

Raise to power ^ 4^1.5 8
Integer divide DIV -8 DIV 2

7 DIV 2
-4
3

Integers only
Do not divide by zero

Modulus MOD 13 MOD 5
21 MOD 7
-17 MOD 8

3
0
7

Modulus returns the remainder part of a division. Any attempt to divide by zero will
generate an error and terminate program execution.

NUMERIC EXPRESSIONS

Strictly speaking, a numeric expression is an expression which evaluates to a number and
there are more possibilities than we need to discuss here. SuperBASIC allows you to do

complex things if you want to but it also allows you to do simple things in simple ways. In
this section we concentrate on those usual straightforward uses of mathematical features.

Basically numeric expressions in SuperBASIC are the same as those of mathematics but
you must put the whole expression in the form of a sequence.

5+3
6-4

becomes in SuperBASIC (or other BASIC):

(5 + 3)/(6 - 4)

In secondary school algebra there is an expression for one solution of a quadratic
equation:

ax
2
 + bx + c = 0

One solution in mathematical notation is:

If we start with the equation:

2x
2
 - 3x + 1 = 0

Example 1

The following program will find one solution.

100 READ a,b,c

110 PRINT 'Root is' ! (-b+SQRT(b^2 - 4*a*c))/(2*a)

120 DATA 2,-3,1

Example 2

In problems which need to simulate the dealing of cards you can make cards correspond
to the numbers 1 to 52 as follows:

1 to 13
14 to 26
27 to 39
40 to 52
Ace, two........king of hearts
Ace, two........king of clubs
Ace, two........king of diamonds

Ace, two........king of spades

A particular card can be identified as follows:

100 REM Card identification

110 LET card = 23

120 LET suit = (card-1) DIV 13

130 LET value = card MOD 13

140 IF value = 0 THEN LET value = 13

150 IF value = 1 THEN PRINT "Ace of ";

160 IF value >= 2 AND value <= 10 THEN PRINT value ! "of ";

170 IF value = 11 THEN PRINT "Jack of ";

180 IF value = 12 THEN PRINT "Queen of ";

190 IF value = 13 THEN PRINT "King of ";

200 IF suit = 0 THEN PRINT "hearts"

210 IF suit = 1 THEN PRINT "clubs"

220 IF suit = 2 THEN PRINT "diamonds"

230 IF suit = 3 THEN PRINT "spades"

There are new ideas in this program. They are in line 160. The meaning is clearly that the
number is actually printed only if two logical statements are true. These are:

value is greater than or equal to 2 AND value is less than or equal to 10

Cards outside this range are either aces or 'court cards' and must be treated differently

Note also the use of ! in the PRINT statement to provide a space and ; to ensure that
output continues on the same line.

There are two groups of mathematical functions which we have not discussed here. They
are the trigonometric and logarithmic. You may need the former in organising screen
displays. Types of functions are also fully defined in the reference section.

LOGICAL VARIABLES

Strictly speaking, SuperBASIC does not allow logical variables but it allows you to use
other variables as logical ones. For example you can run the following program:

100 REMark Logical Variable

110 LET hungry = 1

120 IF hungry THEN PRINT "Have a bun"

You expect a logical expression in line 120 but the numeric variable, hungry is there on its
own. The system interprets the value, 1, of hungry as true and the output is:

Have a bun

If line 110 read:

LET hungry = 0

there would be no output. The system interprets zero as false and all other values as true.
That is useful but you can disguise the numeric quality of hungry by writing:

100 REMark Logical Variable

110 LET true = 1 : false = 0

120 LET hungry = true

130 IF hungry THEN PRINT "Have a bun"

STRING VARIABLES

There is much to be said about handling strings and string variables and this is left to a
separate chapter.

PROBLEMS ON CHAPTER 9

1. A rich oil dealer gambles by tossing a coin in the following way. If it comes down heads

he gets 1. If it comes down tails he throws again but the possible reward is doubled.
This is repeated so that the rewards are as shown.

THROW 1 2 3 4 5 6 7
REWARDS 1 2 4 8 16 32 64

By simulating the game try to decide what would be a fair initial payment for each such
game:

(a) if the player is limited to a maximum of seven throws per game.
(b) if there is no maximum number of throws

2. Bill and Ben agree to gamble as follows. At a given signal each divides his money into

two halves and passes one half to the other player. Each then divides his new total
and passes half to the other. Show what happens as the game proceeds if Bill starts
with 16p and Ben starts with 64p.

3. What happens if the game is changed so that each hands over an amount equal to

half of what the other possesses?

4. Write a program which forms random three letter words chosen from A,B,C,D and

prints them until ' BAD ' appears.

5. Modify the last program so that it terminates when any real three letter word appears.

CHAPTER 10 – LOGIC

If you have read previous chapters you will probably agree that repetition, decision making
and breaking tasks into sub-tasks are major concepts in problem analysis, program design
and encoding programs. Two of these concepts, repetition and decision making, need
logical expressions such as those in the following program lines:

IF score = 7 THEN EXIT throws

IF suit = 3 THEN PRINT "spades"

The first enables EXIT from a REPeat loop. The second is simply a decision to do
something or not. A mathematical expression evaluates to one of millions of possible
numeric values. Similarly a string expression can evaluate to millions of possible strings of
characters. You may find it strange that logical expressions, for which great importance is
claimed, can evaluate to one of only two possible values: true or false.

In the case of

score = 7

this is obviously correct. Either score equals 7 or it doesn't! The expression must be true or
false - assuming that it's not meaningless. It may be that you do not know the value at
some time, but that will be put right in due course.

You have to be a bit more careful of expressions involving words such as OR, AND, NOT
but they are well worth investigating - indeed, they are essential to good programming.
They will become even more important with the trend towards other kinds of languages
based more on precise descriptions of what you require rather than what the computer
must do.

AND

The word AND in SuperBASIC is like the word 'and' in ordinary English. Consider the
following program.

100 REMark AND

110 PRINT "Enter two values" \ "1 for TRUE or 0 for FALSE"

120 INPUT raining, hole_in_roof

130 IF raining AND hole_in_roof THEN PRINT "Get wet"

As in real life, you will only get wet if it is raining and there is a hole in the roof. If one (or
both) of the simple logical variables

raining
hole_in_roof

is false then the compound logical expression

raining AND hole_in_roof

is also false. It takes two true values to make the whole expression true. This can be seen
from the rules below. Only when the compound expression is true do you get wet.

raining hole_in_roof raining and hole_in_roof effect

FALSE
FALSE
TRUE
TRUE

FALSE
TRUE
FALSE
TRUE

FALSE
FALSE
FALSE
TRUE

DRY
DRY
DRY
WET

Rules for AND

OR

In everyday life the word 'or' is used in two ways. We can illustrate the inclusive use of OR
by thinking of a cricket captain looking for players. He might ask "Can you bat or bowl?" He
would be pleased if a player could do just one thing well but he would also be pleased if
someone could do both. So it is in programming: a compound expression using OR is true
if either or both of the simple statements or variables are true. Try the following program.

100 REMark OR test

110 PRINT "Enter two values" \ "1 for TRUE or 0 for FALSE"

120 INPUT "Can you bat?", batsman

130 INPUT "Can you bowl?", bowler

140 IF batsman OR bowler THEN PRINT "In the team"

You can see the effects of different combinations of answers in the rules below:

batsman bowler batsman OR bowler effect

FALSE
FALSE
TRUE
TRUE

FALSE
TRUE
FALSE
TRUE

FALSE
TRUE
TRUE
TRUE

not in team
in the team
in the team
in the team

Rules for OR

When the inclusive OR is used a true value in either of the simple statements will produce
a true value in the compound expression. If Ian Botham, the England all rounder were to
answer the questions both as a bowler and as a batsman, both simple statements would
be true and so would the compound expression. He would be in the team.

If you write 0 for false and 1 for true you will get all the possible combinations by counting
in binary numbers:

00
01
10
11

NOT

The word NOT has the obvious meaning.

NOT true is the same as false
NOT false is the same as true

However you need to be careful. Suppose you hold a red triangle and say that it is:

NOT red AND square

In English this may be ambiguous.

If you mean:

(NOT red) AND square

then for a red triangle the expression is false.

If you mean:

NOT (red AND square)

then for a red triangle the whole expression is true. There must be a rule in programming
to make it clear what is meant. The rule is that NOT takes precedence over AND so the
interpretation:

(NOT red) AND square

is the correct one This is the same as:

NOT red AND square

To get the other interpretation you must use brackets. If you need to use a complex logical
expression it is best to use brackets and NOT if their usage naturally reflects what you
want. But you can if you wish always remove brackets by using the following laws
(attributed to Augustus De Morgan)

NOT (a AND b) is the same as NOT a OR NOT b
NOT (a OR b) is the same as NOT a AND NOT b

For example:

NOT (tall AND fair) is the same as
NOT tall OR NOT fair

NOT (hungry OR thirsty) is the same as
NOT hungry AND NOT thirsty

Test this by entering

100 REMark NOT and brackets

110 PRINT "Enter two values"\"1 for TRUE or 0 for FALSE"

120 INPUT "tall "; tall

130 INPUT "fair "; fair

140 IF NOT (tall AND fair) THEN PRINT "FIRST"

150 IF NOT tall OR NOT fair THEN PRINT "SECOND"

Whatever combination of numbers you give as input, the output will always be either two
words or none, never one. This will suggest that the two compound logical expressions are
equivalent.

XOR-Exclusive OR

Suppose a golf professional wanted an assistant who could either run the shop or give golf
lessons. If an applicant turned up with both abilities he might not get the job because the
golf professional might fear that such an able assistant would try to take over. He would
accept a good golfer who could not run the shop. He would also accept a poor golfer who
could run the shop. This is an exclusive OR situation: either is acceptable but not both. The
following program would test applicants:

100 REMark XOR test

110 PRINT "Enter 1 for yes or 0 for no."

120 INPUT "Can you run a shop?", shop

130 INPUT "Can you teach golf?", golf

140 IF shop XOR golf THEN PRINT "Suitable"

The only combinations of answers that will cause the output "Suitable" are (0 and 1) or
(1 and 0). The rules for XOR are given below.

Able to run shop Able to teach Shop XOR teach effect

FALSE
FALSE
TRUE
TRUE

FALSE
TRUE
FALSE
TRUE

FALSE
TRUE
TRUE
FALSE

No job

Gets the job
Gets the job

No job

rules for XOR

PRIORITIES

The order of priority for the logical operators is (highest first):

NOT
AND

OR,XOR
For example the expression

rich OR tall AND fair

means the same as:

rich OR (tall AND fair)

The AND operation is performed first. To prove that the two logical expressions have
identical effects run the following program:

100 REMark Priorities

110 PRINT "Enter three values"\"Type 1 for Yes and 0 for No"!

120 INPUT rich,tall,fair

130 IF rich OR tall AND fair THEN PRINT "YES"

140 IF rich OR (tall AND fair) THEN PRINT "AYE"

Whatever combination of three zeroes or ones you input at line 120 the output will be
either nothing or:

YES

AYE

You can make sure that you test all possibilities by entering data which forms eight three
digit binary numbers 000 to 111

000 001 010 011 100 101 110 111

PROBLEMS ON CHAPTER 10

1. Place ten numbers in a DATA statement. READ each number and if it is greater

than 20 then print it.

2. Test all the numbers from 1 to 100 and print only those which are perfect squares
or divisible by 7

3. Toys are described as Safe (S), or Unsafe (U), Expensive (E) or Cheap (C), and

either for Girls (G),Boys (B) or Anyone (A). A trio of letters encodes the qualities of
each toy. Place five such trios in a DATA statement and then search it printing only
those which are safe and suitable for girls.

4. Modify program 3 to print those which are expensive and not safe.

5. Modify program 3 to print those which are safe, not expensive and suitable for

anyone.

CHAPTER 11 – HANDLING TEXT – STRINGS

You have used string variables to store character strings and you know that the rules for
manipulating string variables or string constants are not the same as those for numeric
variables or numeric constants. SuperBASIC offers a full range of facilities for manipulating
character strings effectively. In particular the concept of string-slicing both extends and
simplifies the business of handling substrings or slices of a string.

ASSIGNING STRINGS

Storage for string variables is allocated as it is required by a program. For example, the
lines:

100 LET words$ = "LONG"

110 LET words$ = "LONGER"

120 PRINT words$

would cause the six letter word, LONGER, to be printed. The first line would cause space
for four letters to be allocated but this allocation would be overruled by the second line
which requires space for six characters.

It is, however, possible to dimension (i.e. reserve space for) a string variable, in which case
the maximum length becomes defined, and the variable behaves as an array.

JOINING STRINGS

You may wish to construct records in data processing from a number of sources. Suppose,
for example, that you are a teacher and you want to store a set of three marks for each
student in Literature, History and Geography. The marks are held in variables as shown:

Lit$ 62 Hist$ 56 Geog$ 71

As part of student record keeping you may wish to combine the three string values into one
six-character string called mark$. You simply write:

LET mark$ = lit$ & hist$ & geog$

You have created a further variable as shown:

mark$ 625671

But remember that you are dealing with a character string which happens to contain
number characters rather than an actual number. Note that in SuperBASIC the & symbol is

used to join strings together whereas in some other BASICs, the + symbol is used for that
purpose.

COPY A STRING SLICE

A string slice is part of a string. It may be anything from a single character to the whole
string. In order to identify the string slice you need to know the positions of the required
characters.

Suppose you are constructing a children's game in which they have to recognise a word
hidden in a jumble of letters. Each letter has an internal number - an index - corresponding
to its position in the string. Suppose the whole string is stored in the variable jumble$ and
the clue is Big cat.

You can see that the answer is defined by the numbers 6 to 9 which indicate where it is.
You can abstract the answer as shown :

100 jumble$ = "APQOLLIONATSUZ"

110 LET an$ = jumble$(6 TO 9)

120 PRINT an$

REPLACE A STRING SLICE

Now suppose that you wish to change the hidden animal into a bull. You can write two
extra lines:

130 LET jumble$(6 TO 9) = "BULL"

140 PRINT jumble$

The output from the whole five-line program is:

LION

APQOLBULLATSUZ

All string variables are initially empty, they have length zero. If you attempt to copy a string
into a string-slice which has insufficient length then the assignment may not be recognised
by SuperBASIC.

If you wish to copy a string into a string-slice then it is best to ensure the destination string
is long enough by padding it first with spaces.

100 LET subject$ = "ENGLISH MATHS COMPUTING"

110 LET student$ = ""

120 LET student$(9 TO 13) = subject$(9 TO 13)

We say that "BULL" is a slice of the string "APQOLBULLATSUZ". The defining phrase:

(6 TO 9)

is called a slicer. It has other uses. Notice how the same notation may be used on both
sides
of the LET statement. If you want to refer to a single character it would be clumsy to write:

jumble$(6 TO 6)

just to pick out the "B" (possibly as a clue) so you can write instead:

jumble$(6)

to refer to a single character

COERCION

Suppose you have a variable, mark$ holding a record of examination marks. The slice
giving the history mark may be extracted and scaled up, perhaps because the history
teacher has been too strict in the marking. The following lines will extract the history
mark:

100 LET mark$ = "625671"

110 LET hist$ = mark$(3 TO 4)

The problem now is that the value "56" of the variable, hist$ is a string of characters not
numeric data. If you want to scale it up by multiplying by say 1.125, the value of hist$ must
be converted to numeric data first, SuperBASIC will do this conversion automatically when
we type:

120 LET num = 1 .125 * hist$

Line 120 converts the string "56" to the number 56 and multiplies it by 1.125 giving 63.

Now we should replace the old mark by the new mark but now the new mark is still the
number 63 and before it can be inserted back into the original string it must be converted
back to the string '63'. Again SuperBASIC will convert the number automatically when we
type:

130 LET mark$(3 TO 4) = num

140 PRINT mark$

The output from the whole program is:

626371

which shows the history mark increased to 63.

Strictly speaking it is illegal to mix data types in a LET statement. It would be silly to write:

LET num = "LION"

and you would get an error message if you tried, but if you write:

LET num = "65"

the system will conclude that you want the number 65 to become the value of num and do
that. The complete program is:

100 LET mark$ = "625671"

110 LET hist$ = mark$(3 TO 4)

120 LET num = 1.125 * hist$

130 LET mark$(3 TO 4) = num

140 PRINT mark$

Again the output is the same!

In line 120 a string value was converted into numeric form so that it could be multiplied; In
line 130 a number was converted into string form. This converting of data types is known
as type coercion.

You can write the program more economically if you understand both string-slicing and
coercion now:

100 LET mark$ = "625671"

110 LET mark$(3 TO 4) = 1 .125 * mark$(3 TO 4)

120 PRINT mark$

If you have worked with other BASICs you will appreciate the simplicity and power of
string-slicing and coercion.

SEARCHING A STRING

You can search a string for a given substring. The following program displays a jumble of
letters and invites you to spot the animal.

100 REM Animal Spotting

110 LET jumble$ = "SYNDICATE"

120 PRINT jumble$

130 INPUT "What is the animal?" ! an$

140 IF an$ INSTR jumble$ AND an$(1) = "C"

150 PRINT "Correct"

160 ELSE

170 PRINT "Not correct"

180 END IF

The operator INSTR, returns zero if the guess is incorrect. If the guess is correct INSTR
returns the number which is the starting position of the string-slice, in this case 6.

Because the expression:

an$ INSTR jumble$

can be treated as a logical expression the position of the string in a successful search can
be regarded as true, while in an unsuccessful search it can be regarded as false.

OTHER STRING FUNCTIONS

You have already met LEN which returns the length (number of characters) of a string.
You may wish to repeat a particular string or character several times. For example, if you
wish to output a row of asterisks, rather than actually enter forty asterisks in a PRINT
statement or organise a loop you can simply write:

PRINT FILL$ ("*",40)

Finally it is possible to use the function CHR$ to convert internal codes into string
characters. For example:

PRINT CHR$(65)

would output A.

COMPARING STRINGS

A great deal of computing is concerned with organising data so that it can be searched
quickly. Sometimes it is necessary to sort it in to alphabetical order. The basis of various
sorting processes is the facility for comparing two strings to see which comes first.
Because the letters A,B,C ... are internally oded as 65,66,67 it is natural to regard as
correct the following statements:

A is less than B
B is less than C

and because internal character by character comparison is automatically provided:

CAT is less than DOG
CAN is less than CAT

You can write, for example:

IF "CAT" < "DOG" THEN PRINT "MEOW"

and the output would be:

MEOW

Similarly:

IF "DOG" > "CAT" THEN PRINT "WOOF"

would give the output:

WOOF

We use the comparison symbols of mathematics for string comparisons. All the following
logical statements expressions are both permissible and true.

"ALF" < "BEN"

"KIT" > "BEN"

"KIT" <= "LEN"

"KIT" >= "KIT"

"PAT" >= "LEN"

"LEN" <= "LEN"

"PAT" <> "PET"

So far comparisons based simply on internal codes make sense, but data is not always
conveniently restricted to upper case letters. We would like, for example:

Cat to be less than COT
and K2N to be less than K27N

A simple character by character comparison based on internal codes would not give these
results, so SuperBASIC behaves in a more intelligent way. The following program, with
suggested input and the output that will result, illustrates the rules for comparison of
strings.

100 REMark comparisons

110 REPeat comp

120 INPUT "input a string" ! first$

130 INPUT "input another string" ! second$

140 IF first$ < second$ THEN PRINT "Less"

150 IF first$ > second$ THEN PRINT "Greater"

160 IF first$ = second$ THEN PRINT "Equal"

170 END REPeat comp

Input

Output

CAT
CAT
PET
K6
K66

K12N

COT
CAT

PETE
K7
K7

K6N

Greater
Equal
Less
Less

Greater
Greater

> Greater than - Case dependent comparision, numbers compared in numerical order

< Less than - Case dependent, numbers compared in numerical order

= Equals - Case dependent, strings must be the same

== Equivalent - String must be 'almost' the same, Case independent, numbers compared

in numerical order

>= Greater than or equal to - Case dependent, numbers compared in numerical order

<= Less than or equal to Case dependent, numbers compared in numerical order.

PROBLEMS ON CHAPTER 11

1. Place 12 letters, all different, in a string variable and another six letters in a second

string variable. Search the first string for each of the six letters in turn saying in each
case whether it is found or not found.

2. Repeat using single character arrays instead of strings. Place twenty random upper

case letters in a string and list those which are repeated.

3. Write a program to read a sample of text all in upper case letters. Count the frequency

of each letter and print the results.

"GOVERNMENT IS A TRUST, AND THE OFFICERS OF THE GOVERNMENT
ARE TRUSTEES; AND BOTH THE TRUST AND THE TRUSTEES ARE
CREATED FOR THE BENEFIT OF THE PEOPLE. HENRY CLAY 1829."

4. Write a program to count the number of words in the following text. A word is

recognised because it starts with a letter and is followed by a space, full stop or other
punctuation character.

"THE REPORTS OF MY DEATH ARE GREATLY EXAGGERATED. CABLE
FROM MARK TWAIN TO THE ASSOCIATED PRESS, LONDON 1896."

5. Rewrite the last program illustrating the use of logical variables and procedures.

CHAPTER 12 – SCREEN OUTPUT

SuperBASIC has so extended the scope and variety of facilities for screen presentation
that we describe the features in two sections: Simple Printing and Screen.

The first section describes the output of ordinary text. Here we explain the minimal well
established methods of displaying messages, text, or numerical output. Even in this
mundane section there is innovation in the concept of the 'intelligent' space an example of
combining ease of use with very useful effects.

The second section is much bigger because it has a great deal to say. The wide range of
features actually makes things easier For example, you can draw a circle by simply writing
the word CIRCLE followed by a few details to define such things as its position and size.
Many other systems require you to understand some geometry and trigonometry in order
to do what is, in concept, simple.

Each keyword has been carefully chosen to reflect the effect it causes. WINDOW defines
an area of the screen: BORDER puts a border round it; PAPER defines the background
colour; INK determines the colour of what you put on the paper.

If you work through this chapter and get a little practice you will easily remember which
keyword causes which effect. You will add that extra quality to your programming fairly
easily. With experience you may see why computer graphics is becoming a new art form.

SIMPLE PRINTING

The keyword PRINT can be followed by a sequence of print items. A print item may be any
of:
text such as: "This is text"

variables such as : num, word$
expressions such as : 3 * num, day$ & week$

Print items may be mixed in any print statement but there must be one or more print
separators between each pair. Print separators may be any of:

; No effect - it just separates print items.

! Normally inserts a space between output items. If an item will not fit on the current line it

behaves as a new line symbol. If the item is at the start of line a space is not generated.

, A tabulator causes the output to be tabulated in columns of 8 characters

\ A new line symbol will force a new line.

TO Allows tabbing.

The numbers 1,2,3 are legitimate print items and are convenient for illustrating the effects
of print separators

Statement

Effect

100 PRINT 1,2,3

100 print 1 ! 2 ! 3 !

100 PRINT 1 \ 2 \ 3

100 PRINT 1 ; 2 ; 3

100 PRINT “This is text”

100 LET word$ = “ “

110 PRINT word$

100 LET num = 13

110 PRINT num

100 LET an$ = “yes”

110 PRINT “I say“ ! an$

110 PRINT”Sum is” ! 4+2

1 2 3

1 2 3

1

2

3

123

This is text

Moves print position

13

I say yes

Sum is 6

You can position print output anywhere on the screen with the AT command.

For example:

AT 10,15 : PRINT "This is on row 10 at column 15"

The CURSOR command can be used to position the print output anywhere on the screen's
scale system. For example:

CURSOR 100,150 : PRINT "this is 100 pixel grid units across

and 150 down"

If you read the Keyword Reference Guide you may find it difficult to reconcile the section
on PRINT with the above description. Two of the difficulties disappear if you understand
that:

Text in quotes, variables and numbers are all strictly speaking, expressions: they
are the simplest (degenerate) forms of expressions.

Print separators are strictly classified as print items.

SCREEN

This section introduces general effects which apply whether you wish to output text or
graphics. The statement:

MODE 8 or MODE 256

will select MODE 8 in which there are:

256 pixels across numbered 0 511 (two numbers per pixel)
256 pixels down numbered 0-255
8 colours

A pixel is the smallest area of colour which can be displayed. We use the term, solid
colour because these start with ordinary solid-looking colours of which there are only
eight. However, by using various effects a variety of shades and textures can be achieved.
If you are using your QL with an ordinary television set then the television set will not be
able to reproduce any of these extra effects.

The statement:

MODE 4 or MODE 512

will select MODE 4 in which there are:

512 pixels across numbered 0 to 511
256 pixels down numbered 0 to 255
4 colours

COLOUR

You can select a colour by using the following code in combination with suitable keywords
such as PAPER, INK etc. Note that the numbers by themselves mean nothing. The
numbers are only interpreted as colours when they are used with PAPER and INK, etc.

8 Colour Mode

Code

4 Colour Mode

Black
Blue
Red

Magenta
Green
Cyan

Yellow
white

0
1
2
3
4
5
6
7

Black
Black
Red
Red

Green
Green
White
white

For example INK 3 would give magenta in MODE 8.

STIPPLES

You can if you wish specify two colours in a suitable statement. For example 2,4 would
give a chequerboard stipple as shown. In each group of four pixels two would be red (code
2) corresponding to the colour selected first. The other two pixels would be a contrast It is
not really possible to display this effect on a domestic television set.

If you write:

INK 2,4

the mix colour is formed from the two codes 2 and 4. We will call these choices colour and
contrast!

INK colour, contrast

You can find out what the stipple effects are by trying them but we give more technical
details below.

100 REMark Colour/Contrast

110 FOR colour = 0 TO 7 STEP 2

120 PAPER colour : CLS

140 FOR contrast = 0 TO 7 STEP 2

150 BLOCK 100,50,40,50,colour,contrast

160 PAUSE 50

170 END FOR contrast

180 END FOR colour

If you wish to try different stipples you can add a third code number to the colour
specification. For example:

INK 2,4,1

would specify a red and green horizontal stripe effect. A block of four pixels would be:

COLOUR PARAMETERS

You can specify a colour/stipple effect as described above by using three numbers. For
example:

INK colour, contrast, stipple

could be used with :

colour in range 0 to 7
contrast in range 0 to 7
stipple in range 0 to 3

You could achieve the same effect with a single number if you wish though it is not so
easy to construct. See the Concept Reference Guide - colour.

The following program will display all the possible colour effects:

100 REMark Colour Effects

110 FOR num = 0 TO 255

120 BLOCK 100,50,40,50,num

130 PAUSE 50

140 END FOR num

PAPER

PAPER followed by one, two or three numbers specifies the background. For example:

PAPER 2 {red}
PAPER 2,4 {red/green chequerboard}
PAPER 2,4,1 {red/green horizontal stripes}

The colour will not be visible until something else is done, for example, the screen is
cleared by typing CLS.

INK

INK followed by one, two or three numbers specifies the colour for printing characters,
lines or other graphics. The colour and stipple effects are the same as for PAPER. For
example:

INK 2 {red ink}
INK 2,4 {red/green chequerboard ink 3}
INK 2,4,1 {red/green horizontal striped ink}

The ink will be changed for all subsequent output.

CLS

CLS means clear the window to the current paper colour - like a teacher cleaning a
blackboard, except that it is electronic and multi-coloured.

FLASHING

You can make the ink colour flash in mode 8 only. To turn flash on you might type:

FLASH 1

and to turn it off:

FLASH 0

Allowing flashing characters to overlap can produce alarming results.

FILES

You will have used Microdrives for storing programs and you will have used the commands
LOAD and SAVE. Cartridges can be used for storing data as well as programs. The word
file usually means a sequence of data records, a record being some set of related
information such as name, address and telephone number.

Two of the most widely used types of file are serial and direct access files. Items in a serial
file are usually read in sequence starting with the first. If you want the fiftieth record you
have to read the first forty-nine in order to find it. On the other hand the fiftieth record in a
direct access file can be found quickly because the system does not need to work through
the earlier records to get it. Pop music on a cassette is like a serial file but eight pieces on
a long playing record form a direct access file. You
can move the pick up arm directly onto any of the eight tracks.

The simplest possible type of file is just a sequence of numbers. To illustrate the idea we
will place the numbers 1 to 100 in a file called numbers. However the complete file name is
made up of two parts:

device name
appended information

Suppose that we wish to create the file, numbers, on a cartridge in Microdrive 1. The
device name is:

mdv1_

and the appended information is just the name of the file:

numbers

So the complete file name is:

mdv1_numbers

CHANNELS

It is possible for a program to use several files at once, but it is more convenient to refer to
a file by an associated channel number This can be any integer in the range 0 to 15. A file
is associated with a channel number by using the OPEN statement or, if it is a new file,
OPEN_NEW. For example you may choose channel 7 for the numbers file and write:

You can now refer to the file just by quoting the number #7. The complete program is:

100 REMark simple file

110 OPEN_NEW #7,mdv1_numbers

120 FOR number = 1 TO 100

130 PRINT #7,number

140 END FOR number

150 CLOSE #7

The PRINT statement causes the numbers to be 'printed' on the cartridge file because #7
has been associated with it. The CLOSE #7 statement is necessary because the system
has some internal work to do when the file has been used. It also releases channel 7 for
other possible uses. After the program has executed type

DIR mdv1_

and the directory should show that the file numbers exists on the cartridge in Microdrive
mdv1_ .

You also need to know that the file is correct and you can only be certain of this if the file is
read and checked. The necessary keyword is OPEN_IN, otherwise the program for
reading data from a file is similar to the previous one.

100 REMark Reading a file

110 OPEN IN #6, mdv1_numbers

120 FOR item = 1 TO 100

130 INPUT #6, number

140 PRINT ! number !

150 END FOR item

160 CLOSE #6

The program should output the numbers 1 to 100, but only if the cartridge containing the
file "numbers" is still in Microdrive mdv1_.

DEVICES AND CHANNELS

You have seen one example of a device, a file of data on a Microdrive. We may say
loosely that a file has been opened but strictly we mean that a device has been associated
with a particular channel. Any further necessary information has also been provided.
Certain devices have channels permanently associated with them by the system:

Channel

Use

#0

#1
#2

OUTPUT – command
window
INPUT – keyboard
OUTPUT – print window
LIST – list output

You can create a window of any size anywhere on the screen. The device name for a
window is:

scr

and the appended information is, for example:

The following program creates a window with the channel number 5 and fills it with green
(code 4) and then closes it:

100 REMark Create a window

110 OPEN #5, scr_400x200a20x50

120 PAPER #5,4 : CLS #5

130 CLOSE #5

Notice that each window can have its own features such as paper ink, etc. The fact that a
window has been opened does not mean that it is the current default window.

You can change the position or shape of an opened window without closing it and
reopening it. Try adding two lines to the previous program:

124 WINDOW #5,300,100,110,65

126 PAPER #5,2 : CLS #5

Re-run the program and you will find a red window within the original green one. This red
window is now the one associated with channel 5, see figure.

BORDER

You can place a border round the edge of the screen or a window. For example:

BORDER #5,6

would create a border round the channel #5 window. It would be 6 units thick and the size
of the window would be correspondingly reduced. The border would be transparent,
protecting anything that was under it. You can specify a coloured border by the usual
method.

BORDER #5,6,2

would produce a red border. You can make a border of other colours and textures by the
usual methods. For example,

BORDER 10

Will add a 10 pixel thick transparent border to the current window (transparent because no
colour was specified) and

BORDER 2,0,7,0

Will add a 2 pixel thick black and white stipple border.

BLOCK

You can specify a block's size, position and colour with a single statement. It is placed in
the pixel co-ordinate system relative to the current window or screen. For example:

BLOCK #5,10,20,50,100,2

would create a block in the # 5 window at a position 50 units across and 100 units down. It
would be 10 units wide and 20 units high. Its colour would be red.

It is worth noting that WINDOW and BLOCK statements work without alteration in 4 and 8
colour mode (though the colours may vary) because the across values are always on a 0
to 511 scale and there are always 256 pixel positions down.

SPECIAL PRINTING CSIZE

You can alter the size of characters. For example:

CSIZE 3,1

will give the largest possible characters and:

CSIZE 0,0

will give the smallest. The first number must be 0, 1, 2 or 3 and determines the width. The
second must be 0 or 1 and determines the height. The normal sizes are:

MODE 4 CSIZE 0,0

MODE 8 CSIZE 2,0

The number of lines and columns available for each character size is dependent on
whether the output is viewed on a monitor or on a television set: the row and column sizes
given are for a monitor; those for a television set will be smaller and also will vary between
different televisions.

If you are using low resolution mode the QL will not allow you to select a character size
smaller than default size.

STRIP

You can provide a special background for characters to make them stand out. For
example:

STRIP 7

will give a white strip while

STRIP 2,4,2

will give a red/green vertical striped strip. All the normal colour combinations are possible.

OVER

Normally printing occurs on the current paper colour. You can alter this by using strip. You
can make further effects by using:

OVER 1 1 prints in ink on a transparent strip

OVER -1 -1 prints in ink over existing display on screen

To revert to normal printing on current strip use:

 OVER 0

UNDER

You can underline characters.

UNDER 1 underlines all subsequent output in the current ink

UNDER 0 switches off underling.

SCALE GRAPHICS

If you wish to draw reasonably true geometric figures on a TV or video screen you cannot
easily use a pixel-based system. If you use scale graphics then the system will do the
necessary work to ensure that you can fairly easily draw reasonable circles, squares and
other shapes.

The default scale of the graphics coordinate system is 100 in the vertical direction and
whatever is needed in the across direction to ensure that shapes drawn with the special
graphics keywords (PLOT, DRAW, CIRCLE) are true.

The graphics origin is not the same as the pixel origin which is used to define the position
of windows and blocks. The graphics origin is at the bottom left hand corner of the current
screen or window.

POINTS AND LINES

It is easy to draw points and lines using scale graphics. Using a vertical scale of 100 a
point near the centre of the window can be plotted with:

POINT 60,50

The point (60 units across and 50 units up) will be plotted in the current ink colour.
Similarly a line may be drawn with the statement:

LINE 60,50 TO 80,90

Further elements can be added. For example, the following will draw a square:

LINE 60,50 TO 70,50 TO 70,60 TO 60,60 TO 60,50

RELATIVE MODE

Pair of coordinates such as:

across, up

normally define a point relative to the origin 0,0 in the bottom left hand corner of a window
(or elsewhere if you choose). It is sometimes more convenient to define points relative to
the current cursor position. For example the square above may be plotted in another way
using the LINE_R statement which means:

"Make all pairs of coordinates relative to the current cursor position."

POINT 60,50

LINE_R 0,0 TO 10,0 TO 0,10 TO -10,0 TO 0,-10

First the point 60,50 becomes the origin, then, as lines are drawn, the end of a line
becomes the origin for the next one.

The following program will plot a pattern of randomly placed coloured squares.

100 REMark Coloured Squares

110 PAPER 7 : CLS

120 FOR sq = 1 TO 100

130 INK RND(1 TO 6)

140 POINT RND(90),RND(90)

150 LINE R 0,0 TO 10,0 TO 0,10 TO -10,0 TO 0,-10

160 END FOR sq

The same result could be achieved entirely with absolute graphics but it would require a
little more effort.

CIRCLES AND ELLIPSES

If you want to draw a circle you need to specify:

position say 50,50
radius say 40

The statement

CIRCLE 50,50,40

will draw a circle with the centre at position 50,50 and radius (or height) 40 units, see
figure:

If you add two more parameters:

e.g. CIRCLE 50,50,40,.5

You will get an ellipse. The keywords CIRCLE and ELLIPSE are interchangeable.

The height of the ellipse is 40 as before but the horizontal 'radius' is now only 0.5 of the
height. The number 0.5 is called the eccentricity. If the eccentricity is 1 you get a circle if it
is less than 1 and greater than zero you get an ellipse. If you want to tilt an ellipse you can
change the fifth parameter, for example:

CIRCLE 50,50,40,.5,1

This will tilt the ellipse anti-clockwise by one radian, about 57 degrees, as shown in figure
below

A straight angle is 180 degrees or PI radians, so you can make a pattern of ellipses with
the program:

100 FOR rot = 0 TO 2*PI STEP PI/6

110 CIRCLE 50,50,40,0.5,rot

120 END FOR rot

The order of the parameters for a circle or ellipse is:

centre _across, centre_up, height [eccentricity, angle]

The last two parameters are optional and this is indicated by putting them inside square
brackets ([]).
Write a program which does the following:

1. Open a window 100x100 at (100,50)
2. Scale 100 in mode 8
3. Select black paper and clear window
4. Make green border 2 units wide
5. Draw a pattern of six coloured circles.
6. Close the window

100 REMark pattern

110 MODE 8

120 OPEN #7,scr_100x100a100x50

130 SCALE #7,100,0,0

140 PAPER #7,0 : CLS #7

150 BORDER #7,2,4

160 FOR colour = 1 TO 6

170 INK #7,colour

180 LET rot = 2*PI/colour

190 CIRCLE #7,50,50,30,0.5,rot

200 END FOR colour

210 CLOSE #7

You can get some interesting effects by altering the program. For example try the
amendments:

160 FOR colour = 1 TO 100

180 LET rot = colour*PI/50

ARCS

If you want to draw an arc you need to decide:

starting point
end point
amount of curvature

The first two items are straightforward but the amount of curvature is not so easy. You can
do it by drawing accurately or by trial and error but you must decide what angle the arc
subtends and then specify the angle in radians. An angle of 1.5 radians would give a sharp
bend and a small angle would give a very gentle curvature. Try for example:

ARC 10,50 TO 50,90,1

which gives a moderate curvature in the current INK colour.

FILL

You can fill a closed shape with the current INK colour by simply writing:

FILL 1

before the shape is drawn. The following program produces a green circle.

INK 4

FILL 1

CIRCLE 50,50,30

The FILL command works by drawing touching horizontal lines between suitable points.
The statement:

FILL 0

Will turn off the FILL effect.

SCROLLING AND PANNING

You can scroll or pan the display in a window like a film cameraman. You arrange scrolling
In terms of pixels. A positive number of pixels indicates upwards scrolling, thus

SCROLL 10

Moves the display in the current window or screen 10 pixels downwards.

SCROLL -8

Moves the display 8 pixels up. You can add a second parameter to induce part-scrolling.

SCROLL -8, 1

Will scroll the part above (not including) the cursor line and:

SCROLL -8, 2

Will scroll the part below (not including) the cursor line.

As scrolling occurs, the space left by movement of the display is filled with the current
Paper colour. A second parameter 0 has no effect.

You can PAN the display in the current window left or right. The PAN statement works In a
similar manner to scroll but

Pan 40 moves display right

Pan -40 moves display left

A second parameter gives a partial PAN

0 - whole screen
3 - the whole of the line occupied by the cursor
4 - the right hand side of the line occupied by the cursor. The area of the cursor is also
included.

If you are using stipples or are in 8 colour mode then windows must be panned or Scrolled
in multiples of 2 pixels.

PROBLEMS ON CHAPTER 12

1. Write a program which draws a 'Snakes and Ladders' grid of ten rows of ten rows of

ten squares.

2. Place the numbers 1 to 100 in the squares starting at the bottom left and place F for
finish in the last square.

3. Draw a dartboard on the screen. It should consist of an outer ring which could hold

numbers. A 'doubles' ring and 'triples' ring as shown and a centre consisting of a 'bull's
eye' and a ring around it.

CHAPTER 13 – ARRAYS

Suppose you are a prison governor and you have a new prison block which is called the
West Block. It is ready to receive 50 new prisoners. You need to know which prisoner
(known by his number) is in which cell. You could give each cell a name but it is simpler to
give them numbers 1 to 50.

In a computing simulation we will imagine just 5 prisoners with numbers which we can put
in a DATA statement:

Data 50, 37, 86, 41, 32

We set up an array of variables which share the name, west, and are distinguished by a
number appended in brackets.

It is necessary to declare an array and give its dimensions with a DIM statement:

DIM west(5)

This enables SuperBASIC to allocate space, which might be a large amount. After the DIM
statement has been executed the five variables can be used.

The convicts can be READ from the DATA statement into the five array variables:

FOR cell = 1 TO 5 : READ west (cell)

We can add another FOR loop with a PRINT statement to prove that the convicts are in the
cells.

The complete program is shown below:

100 REMark Prisoners

110 DIM west(5)

120 FOR cell 1 = 1 TO 5 : READ west(cell)

130 FOR cell = 1 TO 5 : PRINT cell ! west(cell)

140 DATA 50, 37, 86, 41, 32

The output from the program is:

1 50

2 37

3 86

4 41

5 32

The numbers 1 to 5 are called subscripts if the array name, west. The array west, is a
numeric array consisting of five numeric array elements.

You can replace line 130 by:

130 PRINT west

This will output the values only:

0

50

37

86

41

32

The zero at the top of the list appears because subscripts range from zero to the declared
number. We will show later how useful the zero elements in arrays can be. Note also that
when a numeric array is DIMensioned its elements are all given the value zero.

STRING ARRAYS

String arrays are similar to numeric arrays but an extra dimension in the DIM statement
specifies the length of each string variable in the array. Suppose that ten of the top players
at Royal Birkdale for the 1982 British Golf Championship were denoted by their first names
and placed in DATA statements.

DATA "Tom","Graham","Sevvy","Jack","Lee"

DATA "Nick","Bernard","Ben","Gregg","Hal"

You would need ten different variable names, but if there were a hundred or a thousand
players the job would become impossibly tedious. An array is a set of variables designed
to cope with problems of this kind. Each variable name consists of two parts:

a name according to the usual rules
a numeric part called a subscript

Write the variable names as:

flat$(1),flat$(2),flat$(3)...etc

Before you can use the array variables you must tell the system about the array and its
dimensions:

DIM flat$(10,8)

This causes eleven (0 to 10) variables to be reserved for use in the program. Each string
variable in the array may have up to eight characters. DIM statements should usually be
placed all together near the beginning of the program. Once the array has been declared in
a DIM statement all the elements of the array can be used. One important advantage is
that you can give the numeric part (the subscript) as a numeric variable. You can write:

FOR number = 1 TO 10 : READ flat$(number)

This would place the golfers in their 'flats':

You can refer to the variables in the usual way but remember to use the right subscript.
Suppose that Tom and Sevvy wished to exchange flats. In computing terms one of them,
Tom say, would have to move into a temporary flat to allow Sevvy time to move. You can
write:

LET temp$ = flat$(1) : REMark Tom into temporary

LET flat$(1) = flat$(3) : REMark Sevvy into flat$(1)

LET flat$(3) = temp$: REMark Tom into flat$(3)

The following program places the ten golfers in an array named flat$ and prints the names
of the occupants with their 'flat numbers' (array subscripts) to prove that they are in
residence. The occupants of flats 1 and 3 then change places. The list of occupants is then
printed again to show that the exchange has occurred.

100 REMark Golfers' Flats

110 DIM flat$(10,8)

120 FOR number = 1 TO 10 : READ flat$(number)

130 printlist

140 exchange

150 printlist

160 REMark End of main program

170 DEFine PROCedure printlist

180 FOR num = 1 TO 10 : PRINT num,flat$(num)

190 END DEFine

200 DEFine PROCedure exchange

210 LET temp$ = f1at$(1)

220 LET flat$(1) = f1at$(3)

230 LET flat$(3) = temp$

240 END DEFine

250 DATA "Tom","Graham","Sevvy","Jack","Lee"

260 DATA "Nick","Bernard","Ben","Greg","Hal"

output (line 130)

output (line 150)

1 Tom

2 Graham

3 Sevvy

4 Jack

5 Lee

6 Nick

7 Bernard

8 Ben

9 Gregg

10 Hal

1 Sevvy

2 Graham

3 Tom

4 Jack

5 Lee

6 Nick

7 Bernard

8 Ben

9 Gregg

10 Hal

TWO DIMENSIONAL ARRAYS

Sometimes the nature of a problem suggests two dimensions such as 3 floors of 10 flats
rather than just a single row of 30.

Suppose that 20 or more golfers need flats and there is a block of 30 flats divided into
three floors of ten f lats each. A realistic method of representing the block would be with a
two-dimensional array, You can think of the thirty variables as shown below:

Assuming DATA statements with 30 names, a suitable way to place the names in the flats
is:

120 FOR floor = 0 TO 2

130 FOR num = 0 TO 9

140 READ flats$(floor,num)

150 END FOR num

160 END FOR floor

You also need a DIM statement:

20 DIM flat$(2,9,8)

which shows that the first subscript can be from 0 to 2 (floor number) and the second
subscript can be from 0 to 9 (room number). The third number states the maximum
number of characters in each array element.

We add a print routine to show that the golfers are in the flats and we use letters to save
space.

100 REMark 30 Golfers

110 DIM flat$(2,9,8)

120 FOR floor = 0 TO 2

130 FOR num = 0 TO 9

140 READ flat$(floor,num) : REMark Golfer goes in

150 END FOR num

160 END FOR floor

170 REMark End of input

180 FOR floor = 0 TO 2

190 PRINT "Floor number" ! Floor

200 FOR num = 0 TO 9

210 PRINT 'Flat' ! num ! flat$(floor,num)

220 END FOR num

230 END FOR floor

240 DATA "A","B","C","D","E","F","G","H","I","J"

250 DATA "K","L","M","N","O","P","Q","R","S","T"

260 DATA "U","V","W","X","Y","Z","@","£","$","%"

The output starts:

Floor number 0

Flat 0 A

Flat 1 B

Flat 2 C

And continues giving the thirty occupants.

ARRAY SLICING

You may find this section hard to read though it is essentially the same concept as string
slicing. You will probably need string-slicing if you get beyond the learning stage of
programming. The need for array-slicing is much rarer and you may wish to omit this
section particularly on a first reading.

We now use the golfers' flats to illustrate the concept of array slicing. The flats will be
numbered 0 to 9 to keep to single digits and names will be single characters for space
reasons.

Given the above values the following are array slices:

flat$(1,3) Means a single array element with value N
flat$(1,1 TO 6) Means six elements with values L M N 0 P Q

Array Element Value

flat$(1,1) L

flat$(1,2) M

flat$(1,3) N

flat$(1,4) O

flat$(1,5) P

flat$(1,6) Q

flat$(1)
means flat$(1,0 TO 9)
Ten elements with values K L M N O P Q R S T

In these examples a range of values of a subscript can be given instead of a single value.
If a subscript is missing completely the complete range is assumed. In the third example
the second subscript is missing and it is assumed by the system to be 0 TO 9.

The techniques of array slicing and string slicing are similar though the latter is more
widely applicable.

PROBLEMS ON CHAPTER 13

1. SORTING

Place ten numbers in an array by reading from a DATA statement. Search the array to find
the lowest number. Make this lowest number the value of the first element of a new array.
Replace it in the first array with a very large number. Repeat this process making the
second lowest number the second value in the new array and so on until you have a sorted
array of numbers which should then be printed.

2. SNAKES AND LADDERS

Represent a snakes and ladders game with a 100 element numeric array. Each element
should contain either

zero

or:

a number in the range 10 to 90 meaning that a player should transfer to that
number by going 'up a ladder' or 'down a snake'

or:
the digits 1, 2, 3, etc. to denote a particular player's position.

Set up six snakes and six ladders by placing numbers in the array and simulate one 'solo'
run by a single player to test the game.

3. CROSSWORD BLANKS

 1 2 3 4 5 columns

 1

 2

row 3

 4

 5

Crosswords usually have an odd number of rows or columns in which the black squares
have a symmetrical pattern. The pattern is said to have rotational symmetry because
rotation through 180 degrees would not change it.
Note that after rotation through 180 degrees the square in row 4, column1 could become
the square in row 2, column 5. That is row 4, column 1 becomes row 2, column 5 in a 5 x 5
grid.

Write a program to generate and display a symmetrical pattern of this kind.

4. Modify the crossword pattern so that there are no sequences, across or down, of
less than four white squares.

5. CARD SHUFFLE

Cards are denoted by the numbers 1-52 stored in an array. They can be converted easily
to actual card values when necessary. The cards should be 'shuffled' as follows.

Choose any position in range 1-51 e.g. 17

Place the card in this position in a temporary store.

Shunt all the cards in positions 52 to 18 down to positions 51 to 17

Place the chosen card from the temporary store to position 52.

Deal similarly with the ranges 1-50, 1-49 .. down to 1-2 so that the pack is well
shuffled.

Output the result of the shuffle

6. Set up six DATA statements each containing a surname, initials and a telephone
number (dialling code and local number). Decide on a suitable structure of arrays to store
this information and READ it into the arrays.

PRINT the data using a separate FOR loop and explain how the input format (DATA), the
internal format (arrays) and output format are not necessarily all the same.

CHAPTER 14 – PROGRAM STRUCTURE

In this chapter we go again over the ground of program structure : loops and decisions or
selection. We have tried to present things in as simple a way as possible but SuperBASIC
is designed to cope properly with the simple and the complex and all levels in between.
Some parts of this chapter are difficult and if you are new to programming you may wish to
omit parts. The topics covered are:

Loops
Nested loops
Binary decisions
Multiple decisions

The latter parts of the first section, Loops, get difficult as we show how SuperBASIC copes
with problems that other languages simply ignore. Skip these parts if you feel so inclined
but the other sections are more straightforward.

LOOPS

In this section we attempt to illustrate the well known problems of handling repetition with
simulations of some Wild West scenes. The context may be contrived and trivial but it
offers a simple basis for discussion and it illustrates difficulties which arise across the
whole range of programming applications.

EXAMPLE 1

A bandit is holed up in the Old School House. The sheriff has six bullets in his gun.
Simulate the firing of the six shots.

Program 1

100 REMark Western FOR

110 FOR bullets = 1 TO 6

120 PRINT "Take aim"

130 PRINT "Fire shot"

140 END FOR bullets

Program 2

100 REMark Western REPeat

110 LET bullets = 6

120 REPeat bandit

130 PRINT "Take aim"

140 PRINT "Fire shot"

150 LET bullets = bullets - 1

160 IF bullets = 0 THEN EXIT bandit

170 END REPeat bandit

Both these programs produce the same output:

Take aim

Fire a shot

Is printed six times

If in each program the 6 is changed to any number down to 1 both programs still work as
you would expect. But what if the gun is empty before any shots have been fired?

EXAMPLE 2

Suppose that someone has secretly taken all the bullets out of the sheriff's gun. What
happens if you simply change the 6 to 0 in each program?

Program 1

100 REMark Western FOR Zero Case

110 FOR bullets = 1 to 0

120 PRINT"Take aim"

130 PRINT "Fire a shot"

140 END FOR bullets

This works correctly. There is no output. The 'zero case' behaves properly in SuperBASIC

Program 2

100 REMark Western REPeat Fails

110 LET bullets = 0

120 REPeat bandit

130 PRINT "Take aim"

140 PRINT "Fire shot"

150 LET bullets = bullets - 1

160 IF bullets = 0 THEN EXIT bandit

170 END REPeat bandit

The program fails in two ways:

1. Take aim

Fire a shot

Is printed though there were never any bullets

2. By the time the variable, bullets, is tested in line 160 it has the value -1 and it never

becomes zero afterwards. The program loops indefinitely. You can cure the infinite
looping by re-writing line 160:

160 IF bullets < 1 THEN EXIT bandit

There is an inherent fault in the programming which does not allow for the possible zero
case. This can be corrected by placing the conditional EXIT before the print statements.

Program 3

100 REMark Western REPeat Zero Case

110 LET bullets = 0

120 REPeat Bandit

130 IF bullets = 0 THEN EXIT Bandit

140 PRINT "Take aim"

150 PRINT "Fire shot"

160 LET bullets = bullets - 1

170 END REPeat Bandit

This program now works properly whatever the initial value of bullets as long as it is a
positive whole number or zero. Method 2 corresponds to the REPEAT.. UNTIL loop of
some languages. Method 3 corresponds to the WHILE....ENDWHILE loop of some
languages. However the REPeat.....END REPeat with EXIT is more flexible than either or
the combination of both.

If you have used other BASICs you may wonder what has happened to the NEXT
statement. We will re-introduce it soon but you will see that both loops have a similar
structure and both are named.

FOR name =
(statements)

END FOR name

(opening keyword)
(content)

(closing keyword)

REPeat name
(statements)

END REPeat name

In addition the REPeat loop must normally have an EXIT amongst the statements or it will
never end.

Note also that the EXIT statement causes control to go to the statement which is
immediately after the END of the loop.

A NEXT statement may be placed in a loop. It causes control to go to the statement which
is just after the opening keyword FOR or REPeat. It should be considered as a kind of
opposite to the EXIT statement. By a curious coincidence the two words, NEXT and EXIT,
both contain EXT. Think of an EXTension to loops and:

N means "Now start again"
I means "It's ended"

EXAMPLE 3

The situation is the same as in example 1. The sheriff has a gun loaded with six bullets
and he is to fire at the bandit but two more conditions apply:

1. If he hits the bandit he stops firing and returns to Dodge City
2. If he runs out of bullets before he hits the bandit, he tells his partner to watch the bandit
while he (sheriff) returns to Dodge City

Program 1

In this case, the content between NEXT and END FOR is a kind of epilogue which is only
executed if the FOR loop runs its full course. If there is a premature EXIT the epilogue is
not executed.

The same effect can be achieved with a REPeat loop though it is not necessarily the best
way to do it. However it is worth looking at (perhaps at a second reading) if you want to
understand structures which are simple enough to use in simple ways and powerful
enough to cope with awkward situations when they arise.

Program 2

100 REMark Western REPeat with Epilogue

110 LET bullets = 6

120 REPeat Bandit

130 PRINT "Take aim"

140 PRINT "Fire shot"

150 LET hit = RND(9)

160 IF hit = 7 THEN EXIT Bandit

170 LET bullets = bullets - 1

180 IF bullets <> 0 THEN NEXT Bandit

190 PRINT "Watch Bandit"

200 END REPeat Bandit

210 PRINT "Return to Dodge City"

The program works properly as long as the sheriff has at least one bullet at the start. It fails
if line 20 reads:

110 LET bullets = 0

You might think that the sheriff would be a fool to start an enterprise of this kind if he had
no bullets at all, and you would be right. We are now discussing how to preserve good
structure in the most complex type of situation. We have at least kept the problem context
simple: we know what we are trying to do. Complex structural problems usually arise in
contexts more difficult than Wild West simulations. But if you really want a solution to the
problem which caters for a possible hit, running out of bullets and an epilogue, and also the
zero case then add the following line to the above program:

125 IF bullets = 0 THEN PRINT "Watch Bandit" : EXIT bandit

We can conceive of no more complex type of problem than this with a single loop.
SuperBASIC can easily handle it if you want it to.

NESTED LOOPS

Consider the following FOR loop which PLOTS a row of points of various randomly chosen
colours (not black).

100 REMark Row of pixels

110 PAPER 0 : CLS

120 LET up = 50

130 FOR across = 20 TO 60

140 INK RND(2 TO 7)

150 POINT across,up

160 END FOR across

This program plots a row of points thus:

...

If you want to get say 51 rows of points you must plot a row for values up from 30 to 80.
But you must always observe the rule that a structure can go completely within another or
it can go properly around it. It can also follow in sequence, but it cannot 'mesh' with
another structure. Books about programming often show how FOR loops can be related
with a diagram like:

In SuperBASIC the rule applies to all structures. You can solve all problems using them
properly. We therefore treat the FOR loop as an entity and design a new program:

FOR up = 30 TO 80

 FOR across = 20 TO 60

 INK RND(2 TO 7)

 POINT across,up

 END FOR across

END FOR up

When we translate this into a program we are entitled not only to expect it to work but to
know what it will do. It will plot a rectangle made up of rows of pixels.

100 REMark Rows of pixels

110 PAPER 0 : CLS

120 FOR up = 30 TO 80

130 FOR across = 20 TO 60

140 INK RND(2 TO 7)

150 POINT across,up

160 END FOR across

170 END FOR up

Different structures may be nested. Suppose we replace the inner FOR loop of the above
program by a REPeat loop. We will terminate the REPeat loop when the zero colour code
appears for a selection in the range 0 to 7.

100 REMark REPeat in FOR

110 PAPER 0 : CLS

120 FOR up = 30 TO 80

130 LET across = 19

140 REPeat dots

150 LET colour = RND(7)

160 INK colour

170 LET across = across + 1

180 POINT across,up

190 IF colour = 0 THEN EXIT dots

200 END REPeat dots

210 END FOR up

Much of the wisdom about program control and structure can be expressed in two rules:

1. Construct your program using only the legitimate structures for loops and decision

making.

2. Each structure should be properly related in sequence or wholly within another.

BINARY DECISIONS

The three types of binary decision can be illustrated easily in terms of what to do when
when it rains.

Example 1:

100 REMark Short form IF

110 LET rain = RND(0 TO 1)

120 IF rain THEN PRINT "Open brolly"

Example 2:

100 REMark Long form IF. ..END IF

110 LET rain = RND(0 TO 1)

120 IF rain THEN

130 PRINT "Wear coat"

140 PRINT "Open brolly"

150 PRINT "Walk fast"

160 END IF

Example 3:

100 REMark Long form IF ...ELSE...END IF

110 LET rain = RND(0 TO 1)

120 IF rain THEN

130 PRINT "Take a bus"

140 ELSE

150 PRINT "Walk"

160 END IF

AII these are binary decisions. The first two examples are simple : either something
happens or it does not. The third is a general binary decision with two distinct possible
courses of action, both of which must be defined.

You can omit THEN in the long forms if you wish. In the short form you can substitute : for
THEN.

EXAMPLE

Consider a more complex example in which it seems natural to nest binary decisions. This
type of nesting can be confusing and you should only do it if it seems the most natural
thing to do. Careful attention to layout, particularly indenting, is especially important.

Analyse a piece of text to count the number of vowels, consonants and other characters.
Ignore spaces. For simplicity the text is all upper case.

Data:

"COMPUTER HISTORY WAS MADE IN 1984"

Design:

Read in the data
FOR each character:
 IF letter THEN
 IF vowel
 increase vowel count
 ELSE
 increase consonant count
 END IF
 ELSE
 IF not space THEN increase other count
 END IF
END FOR
PRINT results

100 REMark Character Counts

110 RESTORE 290

120 READ text$

130 LET vowels = 0 : cons = 0 : others = 0

140 FOR num = 1 TO LEN(text$)

150 LET ch$ = text$(num)

160 IF ch$ >= "A" AND ch$ <= 'Z'

170 IF ch$ INSTR "AEIOU"

180 LET vowels = vowels + 1

190 ELSE

200 LET cons = cons + 1

210 END IF

220 ELSE

230 IF ch$ <> " " THEN others = others + 1

240 END IF

250 END FOR num

260 PRINT "Vowel count is" ! vowels

270 PRINT "Consonant count is" ! cons

280 PRINT "Other count is" ! others

290 DATA "COMPUTER HISTORY WAS MADE IN 1984"

Output

Vowel count is 9

Consonant count is 15

Other count is 4

MULTIPLE DECISIONS - SELect

Where there are three or more possible actions and none is dependant on a previous
choice the natural structure to use is SELect which enables selection from any number of
possibilities.

EXAMPLE

A magic snake grows without limit by adding a section to its front. Each section may be up
to twenty units long and may be a new colour or it may remain the same. Each new section
must grow in one of the directions North, South, East, or West. The snake starts from the
centre of the window.

Method

At any time while the snake is still on the screen you choose a random length and ink
colour easily. The direction may be selected by a number 1,2,3 or 4 as shown:

Design:

Select PAPER
Set snake to centre of window
REPeat
 Choose direction, colour length of growth
 FOR unit = 1 to growth
 Make snake grow north, south, east or west
 IF snake is off window THEN EXIT
 END FOR
END REpeat
PRINT end message

Program:

100 REMark Magic Snake

110 PAPER 0 : CLS

120 LET across = 50 : up = 50

130 REPeat snake

140 LET direction = RND(l TO 4) : colour = RND(2 TO 7)

150 LET growth = RND(2 TO 20)

160 INK colour

170 FOR unit = 1 TO growth

180 SELect ON direction

190 ON direction = 1

200 LET up = up + 1

210 ON direction = 2

220 LET across = across + 1

230 ON direction = 3

240 LET up = up - 1

250 ON direction = 4

260 LET across = across - 1

270 END SELect

280 IF across < 1 OR across > 99 OR up < 1 OR up > 99 :

EXIT snake

290 POINT across,up

300 END FOR unit

310 END REPeat snake

320 PRINT "Snake off edge"

The syntax of the SELect ON structure also allows for the possibility of selecting on a list
of values such as

5,6,8,10 TO 13

It is also possible to allow for an action to be executed if none of the stated values is found.
The full structure is of the form given below.

LONG FORM

SELect ON num
ON num = list of values
 statements
ON num = list of values
 Statements
 -
 -
 -
 -
ON num = REMAINDER
 statements
END SELect

where num is any numeric variable and the REMAINDER clause is optional.

SHORT FORM

There is a short form of the SELect structure. For example:

100 INPUT num

110 SELect ON num = 0 TO 9 : PRINT "digit"

will perform as you would expect.

PROBLEMS ON CHAPTER 14

1. Store 10 numbers in an array and perform a 'bubble-sort'. This is done by comparing

the first pair and exchanging, if necessary the second pair (second and third numbers),
up to the ninth pair (ninth and tenth numbers). The first run of nine comparisons and
possible exchanges guarantees that the highest number will reach its correct position.
Another eight runs will guarantee eight more correct positions leaving only the lowest
number which must be in the only (correct) position left. The simplest form of 'bubble
sort' of ten numbers requires nine runs of nine comparisons.

2. Consider ways of speeding up bubblesort, but do not expect that it will ever be very
efficient.

3. An auctioneer wishes to sell an old clock and he has instructions to invite a first bid of

£50. If no-one bids he can come down to £40, £30, £20, but no lower, in an effort to
start the bidding. If no-one bids, the clock is withdrawn from the sale. When the bidding
starts, he takes only £5 increases until the final bid is made. If the final bid is £35 (the
'reserve price') or more, the clock is sold. Otherwise it is withdrawn.

Simulate the auction using the equivalent of a six-sided die throw to start the bidding.
A 'six' at any of the starting prices will start it off.

When the bidding has started there should be a three out of four chance of a higher
bid at each invitation.

4. In a wild west shoot-out the Sheriff has no ammunition and wishes to arrest a gunman

camped in a forest. He rides amongst the trees tempting the gunman to fire. He hopes
that when six shots have been fired he can rush in and overpower the gunman as he
tries to re-load. Simulate the encounter giving the gunman a one-twentieth chance of
hitting the Sheriff with each shot. If the Sheriff has not been hit after six shots he will
arrest the gunman.

5. The Sheriff's instructions to his Deputy are:

"If the gun is empty then re-load it and if it ain't then keep on firing until you
hit the bandit or he surrenders. If Mexico Pete turns up, get out fast."

Write a program which caters properly for all these situations:

Whatever happens, return to Dodge City
If Mexico Pete turns up, return immediately
If the gun is empty reload it
If the gun is not empty ask the bandit to surrender.
If the bandit surrenders, arrest him.
If he doesn't surrender fire a shot.
If the bandit is hit, arrest him and fix his wound.

Assume an unlimited supply of ammunition Use a simulated 'twenty-sided die' and
let a seven mean 'surrender' and a 'thirteen' mean the bandit is hit.

CHAPTER 15 – PROCEDURES AND FUNCTIONS

In the first part of this chapter we explain the more straightforward features of
SuperBASIC's procedures and functions. We do this with very simple examples so that
you can understand the working of each feature as it is described. Though the examples
are simple and contrived you will appreciate that, once understood, the ideas can be
applied in more complex situations where they really matter.

After the first part there is a discussion which attempts to explain 'Why procedures' . If you
understand, more or less, up to that point you will be doing well and you should be able to
use procedures and functions with increasing effectiveness.

SuperBASIC first allows you to do the simpler things in simple ways and then offers you
more if you want it. Extra facilities and some technical matters are explained in the second
part of this chapter but you could omit these, certainly at a first reading, and still be in a
stronger position than most users of older types of BASIC.

VALUE PARAMETERS

You have seen in previous chapters how a value can be passed to a procedure. Here is
another example.

EXAMPLE

In "Chan's Chinese Take-Away" there are just six items on the menu.

Rice Dishes Sweets

1 prawns 4 ice

2 chicken 5 fritter

3 special 6 lychees

Chan has a simple way of computing prices. He works in pence and the prices are:

for a rice dish 300 + 10 times menu number
for a sweet 12 times menu number

Thus a customer who ate special rice and an ice would pay:

300 + 10 * 3 + 12 * 4 = 378 pence

A procedure, item, accepts a menu number as a value parameter and prints the cost.

Program

100 REMark Cost of Dish

110 item 3

120 item 4

130 DEFine PROCedure item(num)

140 IF num <= 3 THEN LET price = 300 + 10*num

150 IF num >= 4 THEN LET price = 12*num

160 PRINT ! price !

170 END DEFine

Output

330 48

In the main program actual parameters 3 and 4 are used. The procedure definition has a
formal parameter num, which takes the value passed to it from the main program. Note
that the formal parameters must be in brackets, but that actual parameters need not be.

EXAMPLE

Now suppose the working variable, "price", was also used in the main program, meaning
something else, say the price of a glass of lager 70p. The following program fails to give
the desired result.

100 REMark Global price

110 LET price = 70

120 item 3

130 item 4

140 PRINT ! price !

150 DEFine PROCedure item(num)

160 IF num <= 3 THEN LET price = 300 + 10*num

170 IF num >= 4 THEN LET price = 12*num

180 PRINT ! price !

190 END DEFine

Output

330 48 48

The price of the lager has been altered by the procedure. We say that the variable, price, is
global because it can be used anywhere in the program.

Make the procedure variable, price, LOCAL to the procedure. This means that
SuperBASIC will treat it as a special variable accessible only within the procedure. The
variable, "price", in the main program will be a different thing even though it has the same
name.

100 REMark LOCAL price

110 LET price = 70

120 item 3

130 item 4

140 PRINT ! price !

150 DEFine PROCedure item(num)

160 LOCaL price

170 IF num <= 3 THEN LET price = 300 + 10*num

180 IF num >= 4 THEN LET price = 12*num

190 PRINT ! price !

200 END DEFine

Output

330 48 70

This time everything works properly. Line 70 causes the procedure variable, price to be
internally marked as 'belonging' only to the procedure, item. The other variable, price is not
affected. You can see that local variables are useful things.

EXAMPLE

Local variables are so useful that we automatically make procedure formal parameters
local. Though we have not mentioned it before parameters such as num in the above
programs cannot interfere with main program variables. To prove this we drop the LOCAL
statement from the above program and use num for the price of lager. Because num in the
procedure is local everything works.

Program

100 REMark LOCAL parameter

110 LET num = 70

120 item 3

130 item 4

140 PRINT ! num !

150 DEFine PROCedure item(num)

160 IF num <= 3 THEN LET price = 300 + 10*num

170 IF num >= 4 THEN LET price = 12*num

180 PRINT ! price !

190 END DEFine

Output

330 48 70

VARIABLE PARAMETERS

So far we have only used procedure parameters for passing values to the procedure. But
suppose the main program wants the cost of an item to be passed back so that it can
compute the total bill. We can do this easily by providing another parameter in the
procedure call. This must be a variable because it has to receive a value from the
procedure. We therefore call it a variable parameter and it must be matched by a
corresponding variable parameter in the procedure definition.

EXAMPLE

Use actual variable parameters, cost_1 and cost_2 to receive the values of the variable
price from the procedure. Make the main program compute and print the total bill.

Program

100 REMark Variable parameter

110 LET num = 70

120 item 3,cost_1

130 item 4,cost_2

140 LET bill = num + cost_1 + cost_2

150 PRINT bill

160 DEFine PROCedure item(num,price)

170 IF num <= 3 THEN LET price = 300 + 10*num

180 IF num >= 4 THEN LET price = 12*num

190 END DEFine

Output

448

The parameters num and price are both automatically local so there can be no problems.
The diagrams show how information passes from main program to procedure and back.

That is enough about procedures and parameters for the present.

FUNCTIONS

You already know how a system function works. For example the function:

SQRT(9)

computes the value, 3, which is the square root of 9. We say the function returns the value
3. A function, like a procedure, can have one or more parameters, but the distinguishing
feature of a function is that it returns exactly one value. This means that you can use it in
expressions that you already have. You can type:

PRINT 2*SQRT(9)

and get the output 6. Thus a function behaves like a procedure with one or more value
parameters and exactly one variable parameter holding the returned value: that variable
parameter is the function name itself.

The parameters need not be numeric.

LEN("string")

has a string argument but it returns the numeric value 6.

EXAMPLE

Re write the program of the last section which used price as a variable parameter. Let
price be the name of the function.

The value to be returned is defined by the RETurn statement as shown.

Program

100 REMark FuNction with RETurn

110 LET num = 70

120 LET bill = num + price(3) + price(4)

130 PRINT bill

140 DEFine FuNction price(num)

150 IF num <= 3 THEN RETurn 300 + 10*num

160 IF num >= 4 THEN RETurn 12*num

170 END DEFine

Output

 448

Notice the simplification in the calling of functions as compared with procedure calls.

WHY PROCEDURES?

The ultimate concept of a procedure is that it should be a 'black box' which receives
specific information from 'outside' and performs certain operations which may include
sending specific information back to the 'outside: The 'outside' may be the main program or
another procedure.

The term 'black box' implies that its internal workings are not important: you only think
about what goes in and what comes out. If for example, a procedure uses a variable, count
and changes its value, that might affect a variable of the same name in the main program.
Think of a mail order company You send them an order and cash: they send you goods.
Information is sent to a procedure and it sends back action and/or new information.

You do not want the mail order company to use your name and address or other
information for other purposes. That would be an unwanted side-effect. Similarly you do
not want a procedure to cause unplanned changes to values of variables used in the main
program.

Of course you could make sure that there are no double uses of variable names in a
program. That will work up to a point but we have shown in this chapter how to avoid
trouble even if you forget what variables have been used in any particular procedure.

A second aim in using procedures is to make a program modular Rather than have one
long main program you can break the job down into what Seymour Papert, the inventor of
LOGO, calls 'Mind-sized bites'. These are the procedures, each one small enough to
understand and control easily. They are linked together by the procedure calls in a
sequence or hierarchy.

A third aim is to avoid writing the same code twice. Write it once as a procedure and call it
twice if necessary. Functions and procedures written for one program can often be directly
used, without change, by other programs, and one might create a library of commonly
used procedures and functions.

We give below another example which shows how procedures make a program modular.

EXAMPLE

An order is placed for six dishes at Chan's Take Away where the menu is:

Item Number Dish Price

1 Prawns 3.50
2 Chicken 2.80
3 Special 3.30

Write procedures for the following tasks.

1. Set up two three-element arrays showing menu, dishes and prices. Use a DATA
statement.

2. Simulate an order for six randomly chosen dishes using a procedure, choose, and

make a tally of the number of times each dish is chosen.

3. Pass the three numbers to a procedure, waiter, which passes back the cost of the

order to the main program using a parameter cost. Procedure waiter calls two other
procedures, compute and cook, which compute the cost and simulate "cooking"

4. The procedure, cook, simply prints the number required and the name of each dish.

The main program should call procedures as necessary, get the total cost from procedure,
waiter add 10% for a tip, and print the amount of the total bill.

DESIGN

This program illustrates parameter passing in a fairly complex way and we will explain the
program step by step before putting it together.

100 REMark Procedures

110 RESTORE 490

120 DIM item$(3,7),price(3),dish(3)

130 REMark *** PROGRAM ***

140 LET tip = 0.1

150 set_up

 -

 -

210 DEFine PROCedure set_up

220 FOR k = 1 TO 3

230 READ item$(k)

240 READ price(k)

250 END FOR k

260 END DEFine

 -

 -

 -

490 DATA "Prawns", 3.5, "Chicken", 2.8, "Special" ,3.3

The names of menu items and their prices are placed in the arrays item$ and price.

The next step is to choose a menu number for each of the six customers. The tally of the
number of each dish required will be kept in the array dish.

160 choose dish

 -

 -

 -

270 DEFine PROCedure choose(dish)

280 FOR pick = 1 TO 6

290 LET number = RND(1 TO 3)

300 LET dish(number) = dish(number) + 1

310 END FOR pick

320 END DEFine

Note that the formal parameter dish is both:

local to procedure choose
an array in main program

The three values are passed back to the global array also called dish. These values are
then passed to the procedure waiter.

170 waiter dish, bill

 -

 -

330 DEFine PROCedure waiter (dish, cost)

340 compute dish,cost

350 cook dish

360 END DEFine

The waiter passes the information about the number of each dish required to the
procedure, compute, which computes the cost and returns it.

370 DEFine PROCedure compute(dish, total)

380 LET total = 0

390 FOR k = 1 to 3

400 LET total = total + dish(k)*price(k)

410 END FOR k

420 END DEFine

The waiter also passes information to the cook who simply prints the number required for
each menu item.

430 DEFine PROCedure cook(dish)

440 FOR c = 1 TO 3

450 PRINT ! dish(c) ! item$(c) !

460 END FOR c

470 END DEFine

Again, the array dish in the procedure cook is local. It receives the information which the
procedure uses in its PRINT statement.

The complete program is listed below.

100 REMark Procedures

110 RESTORE 490

120 DIM item$(3,7),price(3),dish(3)

130 REMark *** PROGRAM ***

140 LET tip = 0.1

150 set_up

160 choose dish

170 waiter dish,bill

180 LET bill = bill + tip*bill

190 PRINT "Total cost is £" ; bill

200 REMark *** PROCEDURE DEFINITIONS ***

210 DEFine PROCedure set_up

220 FOR k = 1 TO 3

230 READ item$(k)

240 READ price(k)

250 END FOR k

260 END DEFine

270 DEFine PROCedure choose(dish)

280 FOR pick = 1 TO 6

290 LET number = RND(1 TO 3)

300 LET dish(number) = dish(number) + 1

310 END FOR pick

320 END DEFine

330 DEFine PROCedure waiter(dish,cost)

340 compute dish,cost

350 cook dish

360 END DEFine

370 DEFine PROCedure compute(dish,total)

380 LET total = 0

390 FOR k = 1 TO 3

400 LET total = total + dish(k)*price(k)

410 END FOR k

420 END DEFine

430 DEFine PROCedure cook(dish)

440 FOR c = 1 TO 3

450 PRINT ! dish(c) ! item$(c)

460 END FOR c

470 END DEFine

480 REMark *** PROGRAM DATA ***

490 DATA "Prawns",3.5,"Chicken",2.8,"Special",3.3

The output depends on the random choice of dishes but the following choice illustrates the
pattern, and gives a sample of output.

3 Prawns

1 Chicken

2 Special

Total cost is £20.40

COMMENT

Obviously the use of procedures and parameters in such a simple program is necessary
but imagine that each sub-task might be much more complex. In such a situation the use

of procedures would allow a modular build-up of the program with testing at each stage.
The above example merely illustrates the main notations and relationships of procedures.

Similarly the next example illustrates the use of functions.

Note that in the previous example the procedures "waiter" and "compute" both return
exactly one value. Rewrite the procedures as functions and show any other changes
necessary as a consequence.

DEFine FuNction waiter(dish)
 cook dish
 RETurn compute(dish)
END DEFine
DEFine FuNction compute(dish)
 LET total = 0
 FOR k = 1 TO 3
 LET total = total + dish(k) * price(k)
 END FOR k
RETurn total
END DEFine

The function call to waiter also takes a different form

LET bill = waiter(dish)

This program works as before. Notice that there are fewer parameters though the program
structure is similar. That is because the function names are also serving as parameters
retuning information to the source of the function call.

EXAMPLE

All the variables used as formal parameters in procedures or functions are 'safe' because
they are automatically local. Which variables used in the procedures or functions are not
local? What additional statements would be needed to make them local?

Program Changes

The variables k, pick and num are not local. The necessary changes to make them so are:

LOCAL k
LOCAL pick,num

TYPELESS PARAMETERS

Formal parameters do not have any type. You may prefer that a variable which handles
numbers has the appearance of a numeric variable and which handles strings looks like a
string variable, but however you write your parameters they are typeless. To prove it, try
the following program.

Program

100 REMark Number or word

110 waiter 2

120 waiter "Chicken"

130 DEFine PROCedure waiter(item)

140 PRINT ! item !

150 END DEFine

Output

2 Chicken

The type of the parameter is determined only when the procedure is called and an actual
parameter 'arrives'.

SCOPE OF VARIABLES

Consider the following program and try to consider what two numbers will be output.

100 REMark scope

110 LET number = 1

120 test

130 DEFine PROCedure test

140 LOCal number

150 LET number = 2

160 PRINT number

170 try

180 END DEFine

190 DEFine PROCedure try

200 PRINT number

210 END DEFine

Obviously the first number to be printed will be 2 but is the variable number in line 200
global?

The answer is that the value of number in line 160 will be carried into the procedure try. A
variable which is local to a procedure will be the same variable in a second procedure
called by the first.

Equally if the procedure try is called by the main program, the variable number will be the
same number in both the main program and procedure, try. The implications may seem
strange at first but they are logical.

1. The variable number in line 110 is global.

2. The variable number in procedure "test" is definitely local to the procedure.

3. The variable number in procedure "try" 'belongs' to the part of the program which was

the last call to it.

We have covered many concepts in this chapter because SuperBASIC functions and
procedures are very powerful. However you should not expect to use all these features
immediately. Use procedures and functions in simple ways at first. They can be very
effective and the power is there if you need it.

PROBLEMS ON CHAPTER 15

1. Six employees are identified by their surnames only. Each employee has a particular

pension fund rate expressed as a percentage. The following data represent the total
salaries and pension fund rates of the six employees.

Benson 13,800 6.25
Hanson 8,700 6.00
Johnson 10,300 6.25
Robson 15,000 7.00
Thomson 6,200 6.00
Watson 5,100 5.75

Write procedures to:

input the data into arrays.
compute the actual pension fund contributions.
output the lists of names and computed contributions.

Link the procedures with a main program calling them in sequence.

2. Write a function select with two arguments range and miss. The function should return

a random whole number in the given range but it should not be the value of miss.

Use the function in a program which chooses a random PAPER colour and then draws
random circles in random INK colours so that none is in the colour of PAPER.

3. Re-write the solution to exercise 1 so that a function pension takes salary and

contribution rate as arguments and returns the computed pension contribution. Use
two procedures, one to input the data and one to output the required information using
the function pension.

4. Write the following:

a procedure which sets up a 'pack of cards'.

a procedure which shuffles the cards.

a function which takes a number as an argument and returns a string value
describing the card.

a procedure which 'deals' and displays four poker hands of five cards each.

a main program which calls the above procedures.

(see chapter 16 for discussion of a similar problem)

CHAPTER 16 – SOME TECHNIQUES

In this final chapter we present some applications of concepts and facilities already
discussed and we show how some further ideas may be applied.

SIMULATION OF CARD PLAYING

It is easy to store and manipulate "playing cards" by representing them with the numbers 1
to 52. This is how you might convert such a number to the equivalent card. Suppose, for
example, that the number 29 appears. You may decide that:

cards 1-13 are hearts
cards 14-26 are clubs
cards 27-39 are diamonds
cards 40 52 are spades

and you will know that 29 means that you have a "diamond". You can program the QL to
do this with:

LET suit = (card-1) DIV 13

This will produce a value in the range 0 to 3 which you can use to cause the appropriate
suit to be printed. The value can be reduced to the range 1 to 13 by writing:

LET value = card MOD 13

IF value = 0 THEN LET value = 13

Program

The numbers 1 to 13 can be made to print Ace, 2, 3... Jack, Queen, King, or if you prefer it,
such phrases as "two of hearts" can be printed. The following program will print the name
of the card corresponding to your input number.

100 REMark Cards

110 DIM suitname$(4,8),cardval$(13,5)

120 LET f$ = " of"

130 set_up

140 REPeat cards

150 INPUT "Enter a card number 1-52:" ! card

160 IF card <1 OR card> 52 THEN EXIT cards

170 LET suit = (card-1) DIV 13

180 LET value = card MOD 13

190 IF value = 0 THEN LET value = 13

200 PRINT cardval$(value) ! f$! suitname$(suit)

210 END REPeat cards

220 DEFine PROCedure set_up

230 FOR s = 1 TO 4 : READ suitname$(s)

240 FOR v = 1 TO 13 : READ cardval$(v)

250 END DEFine

260 DATA "hearts","clubs","diamonds","spades"

270 DATA "Ace","Two","Three","Four","Five","Six","Seven"

280 DATA "Eight","Nine","Ten","Jack","Queen","King"

Input and Output

13

King of hearts

49

Ten of spades

27

Ace of diamonds

0

COMMENT

Notice the use of DATA statements to hold a permanent file of data which the program
always uses. The other data which changes each time the program runs is entered through
an INPUT statement. If the input data was known before running the program it would be
equally correct to use another READ and more DATA statements. This would give better
control.

SEQUENTIAL DATA FILES

The following program will establish a file of one hundred numbers.

100 REMark Number File
110 OPEN NEW #6,mdv1_numbers
120 FOR num = 1 TO 100
130 PRINT #6,num
140 END FOR num
150 CLOSE #6

Numeric File

After running the program check that the filename 'numbers' is in the directory by typing:

DIR mdv1_numbers

You can get a view of the file without any special formatting by copying from Microdrive to
screen:

COPY mdv1_numbers to scr

You can also use the following program to read the file and display its records on the
screen.

100 REMark Read File

110 OPEN_IN #6,mdv1_numbers

120 FOR num = 1 TO 100

130 INPUT #6,item

140 PRINT ! item !

150 END FOR num

160 CLOSE #6

If you wish you can alter the program to get the output in a different form.

Character File

In a similar fashion the following programs will set up a file of one hundred randomly
selected letters and read them back.

100 REMark Letter File

110 OPEN NEW #6,mdv1_chfile

120 FOR num = 1 TO 100

130 LET ch$ = CHR$(RND(65 TO 90))

140 PRINT #6,ch$

150 END FOR num

160 CLOSE #6

100 REMark Get Letters

110 OPEN IN #6,mdv1_chfile

120 FOR num = 1 TO 100

130 INPUT #6,item$

140 PRINT ! item$!

150 END FOR num

160 CLOSE #6

Suppose that you wish to set up a simple file of names and telephone numbers.

RON 678462
GEOFF 896487
ZOE 249386
BEN 584621
MEG 482349
CATH 438975
WENDY 982387

The following program will do it.

100 REMark Phone numbers

110 OPEN NEW #6,mdv1_phone

120 FOR record = 1 TO 7

130 INPUT name$,num$

140 PRINT #6;name$;num$

150 END FOR record

160 CLOSE #6

Type RUN and enter a name followed by the ENTER key and a number followed by the
ENTER key. Repeat this seven times.

Notice that the data is 'buffered'. It is stored internally until the system is ready to transfer a
batch to the Microdrive. The Microdrive is only accessed once, as you can tell from looking
and listening.

COPY A FILE

Once a file is established, it should be copied immediately as a back-up. To do this type:

COPY mdv1_phone TO mdv2_phone

READ A FILE

You need to be certain that the file exists in a correct form so you should read it back from
a Microdrive and display it on the screen. You can do this easily using:

COPY mdv2_phone TO scr

The output to the screen will not provide spaces automatically between the name and the
number but it will provide a 'newline' at the end of each record. The output will be:

RON678462
GEOFF896487
ZOE249386
BEN584621
MEG482349
CATH438975
WENDY982387

You can get a more controlled presentation of the data with the following program.

100 REMark Read Phone Numbers

110 OPEN_IN #5,mdv1_phone

120 FOR record = 1 TO 7

130 INPUT #5,rec$

140 PRINT,rec$

150 END FOR record

160 CLOSE #5

The data is printed, as before, but this time each pair of fields is held in the variable rec$
before being printed on the screen. You have the opportunity to manipulate it into any
desired form.

Note that more than one string variable may be used at the file creation stage with INPUT
and PRINT but the whole record so created may be retrieved from the Microdrive file with a
single string variable (rec$ in the above example).

AN INSERTION SORT

The following colours are available in the low resolution screen mode (in code number
order 0-7).

black blue red magenta green cyan yellow white

EXAMPLE

Write a program to sort the colours into alphabetical order using an "insertion" sort.

Method

We place the eight colours in an array colour$ which we divide into two parts:

We take the leftmost item of the unsorted part and compare it with each item, from right to
left, in the sorted part until we find its right place. As we compare we shuffle the sorted
items to the right so that when we find the right place to insert we can do so immediately
without further shuffling.

Suppose we have reached the point where four items are sorted and we now focus on
green, the leftmost item in the unsorted part.

1. We place green in the variable, comp$, and set a variable, p, to 5.

2. The variable, p, will eventually indicate where we think green should go. When w know

that green should move left, then we decrease the value of p.

3. We compare green with red. If green is greater than (nearer to Z) or equal to red we

exit and green stays where it is.

Otherwise we copy red in to position 5 thus and decrease the value of p thus:

4. We now repeat the process but this time we are comparing green with magenta and

we get:

5. Finally we move left again comparing green with blue. This time there is no need to
move or change anything. We exit from the loop and place green in position 3. We are
then ready to focus on the sixth item, cyan.

PROBLEM ANALYSIS

1. We will first store the colour$ in an array colour$(8) and use:

comp$ the current colour being compared

p to point at the position where we think the colour in comp$ might go.

2. A FOR loop will focus attention on positions 2 to 8 in turn (a single item is already

sorted).

3. A REPeat loop will allow comparisons until we find where the comp$ value actually
goes.

REPeat compare
 IF comp$ need go no further left EXIT
 copy a colour into the position on its right
 and decrease p
END REPeat compare

4. After EXIT from the REPeat loop the colour in comp$ is placed in position p and the
FOR loop continues.

Program Design

1 Declare array colour$

2 Read colours into the array

3 FOR item = 2 TO 8

 LET p = item

 LET comp$ = colour$(p)

 REPEAT compare

 IF comp$ > = colour$(p-1) : EXIT compare

 LET colour$(p) = colour$(p-1)

 LET p = p - 1

 END REPeat compare

 LET colour$(p) = comp$

 END FOR item

4 PRINT sorted array colour$

5 DATA

Further testing reveals a fault. It arises very easily if we have data in which the first item is
not in its correct position at the start. A simple change of initial data to:

red black blue magenta green cyan yellow white

reveals the problem. We compare black with red and decrease p to the value, 1. We come
round again and try to compare black with a variable colour$(p-1) which is colour$(0)
which does not exist.

This is a well-known problem in computing and the solution is to "post a sentinel" on the
end of the array. Just before entering the REPeat loop we need:

LET colour$(0) = comp$

Fortunately SuperBASIC allows zero subscripts, otherwise the problem would have to be
solved at the expense of readability.

MODIFIED PROGRAM

100 REM Insertion Sort

110 DIM colour$(8,7)

120 FOR item = 1 TO 8 : READ colour$(item)

130 FOR item = 2 TO 8

140 LET p=item

150 LET comp$ = colour$(p)

160 LET colour$(0) = comp$

170 REPeat compare

180 IF comp$ >= colour$(p-1) : EXIT compare

190 LET colour$(p) = colour$(p-1)

200 LET p = p-1

210 END REPeat compare

220 LET colour$(p) = comp$

230 END FOR item

240 PRINT"Sorted..." ! colour$

250 DATA "black","blue","magenta","red"

260 DATA "green","cyan","yellow","white"

COMMENT

1. The program works well. It has been tested with awkward data:

A A A A A A A
B A B A B A B
A B A B A B A
B C D E F G H
G F E D C B A

2. An insertion sort is not particularly fast, but it can be useful for adding a few items to an
already sorted list. It is sometimes convenient to allow modest amounts of time
frequently to keep items in order rather than a substantial amount of time less
frequently to do a complete re-sorting.

You now have enough background knowledge to follow a development of the handling of
the file of seven names and telephone numbers.

SORTING A MICRODRIVE FILE

In order to sort the file 'phone' into alphabetical order of names we must read it into an
internal array, sort it, and then create a new file which will be in alphabetical order of
names.

It is never good practice to delete a file before its replacement is clearly established and
proven correct. You should therefore copy the file first, as security using a different name.
The required processes are as follows:

1. Copy the file 'phone' to 'phone_temp'
2. Read the file 'phone' into an array
3. Sort the array.
4. Pause to check that everything is in order
5. Delete file 'phone'.
6. Create new file 'phone'.

This is all the program needs to do but the new file should be immediately checked using:

COPY mdv1_phone TO scr

Any further necessary checks should be carried out then:

DELETE mdv2 phone

COPY mdv1_phone TO mdv2_phone

COPY mdv1_phone TO scr

DELETE mdv1_phone_temp

The above operations complete the process of substituting a sorted file for the original
unsorted one in both master and back-up files.

ARRAY PARAMETERS

In the following program we illustrate the passing of complete arrays between main
program and procedure. The data passes in both directions.

In line 40 the array row holding the numbers 1, 2, 3 is passed to the procedure, addsix.
The parameter come, receives the incoming data and the procedure adds six to each
element. The array parameter, send, at this point holds the numbers 7,8,9.

These numbers are passed back to the main program to become the values of array,
black. The values are printed to prove that the data has moved as required.

Program

100 REMark Pass Arrays

110 DIM row(3),back(3)

120 FOR k = 1 TO 3 : LET row(k) = k

130 addsix row,back

140 FOR k = 1 TO 3 : PRINT ! back(k) !

150 DEFine PROCedure addsix(come,send)

160 FOR k = 1 TO 3 : LET send(k) = come(k) + 6

170 END DEFine

789

Output

The following procedure receives an array containing data to be sorted. The zero element
will contain the number of items. Note that it does not matter whether the array is numeric
or string. The principle of coercion will change string to numeric data if necessary.

A second point of interest is that the array element, come(0), is used for two purposes:

it carries the number of items to be sorted
it is used to hold the item currently being placed.

100 DEFine PROCedure sort(come,send)

110 LET num = come(0)

120 FOR item = 2 TO num

130 LET p = item

140 LET come(0) = come(p)

150 REPeat compare

160 IF come(0) >= come(p-1) : EXIT compare

170 LET come(p) = come(p-1)

180 LET p = p - 1

190 END REPeat compare

200 LET come(p) = come(0)

210 END FOR item

220 FOR k = 1 TO 7 : send(k) = come(k)

230 END DEFine

The following additional lines will test the sort procedure. First type AUTO 10 to start the
line numbers from 10 onwards.

10 REMark Test Sort

20 DIM row$(7,3),back$(7,3)

30 LET row$(0) = 7

40 FOR k = 1 TO 7 : READ row$(k)

50 sort row$,back$

60 PRINT ! back$!

70 DATA "EEL","DOG","ANT","GNU","CAT","BUG","FOX"

Output

ANT BUG CAT DOG EEL FOX GNU

COMMENT

This program illustrates how easily you can handle arrays in SuperBASIC. All you have to
do is use the array names for passing them as parameters or for printing the whole array.
Once the procedure is saved you can use MERGE mdv1_sort to add it to a program in
main memory.

You now have enough understanding of techniques and syntax to handle a more complex
screen layout. Suppose you wish to represent the hands of four card players. A hand can
be represented by something like:

H: A 3 7 Q

C: 5 9 J

D: 6 10 K

S: 2 4 Q

To help the presentation the Hearts and Diamonds will be printed in red and the Clubs and
Spades in black. A suitable STRIP colour might be white. The general background could
be green and a table may be a colour obtained by mixing two colours.

METHOD

Since a substantial amount of character printing is involved it is best to start planning in
terms of the pixel screen. You can see that you need to provide for twelve lines of
characters with some space between lines and a total screen height of 256 pixels.

It is useful to recall that the possible character heights are 10 pixels or 20 pixels. It is
obvious that the 10 pixel height must be used to allow space for a proper layout.

The number of character positions across the screen must be estimated. If we adopt the
convention of "T" for ten instead of "10" all card values can be represented as a single
character. Suppose that we also allow a maximum of eight cards of the same suit as a first
approach. We can reconsider the problem again if necessary That would require a total of
10 characters for each hand. The across requirement is therefore:

west hand + table width + east hand

Allowing a space between characters that would be:

20 + table width + 20

The decision now depends on which screen mode you choose. The 256 mode will cope
with the problem, as you will see later, but first we will work in 512 pixel mode. The
smallest character width is six pixels which would give a total of 240 pixels + table width.
The diagram will have some balance if we have a table width of about half of 240.

We should therefore experiment with a table width of about 120 pixels which may be
adjusted. A little testing produced the layout shown.

WINDOW 440 x 220 at 35,15
 Green with black border of 10 units

TABLE 100 x 60 at 150,60
 Chequerboard stipple of red and green

HANDS Room for at least eight card symbols
 Initial cursor positions are:

 north

150,10

 east 260,60
 south 150,130
 west 30,60

CHARACTER SIZE Standard for 512 mode
NUMBER OF PIXELS between lines is 12

CHARACTER COLOUR White

CHARACTER STRIP Red for Hearts and Diamonds
 Black for Clubs and Spades

VARIABLES

card(52) stores card numbers

sort(13) used to sort each hand
tok$(4,2) stores tokens H:, C:, D:, S:
kmcmh working loop variables
ran random position for card exchange
temp used in card exchange
item card to be inserted in sort
dart pointer to find position in sort
comp hold card number in sort
inc pixel increment in card rows
seat current 'deal' position
ac,dn cursor position for characters
row current row for characters
lin$ builds up row of characters
max highest card number
p points to card position
n current number of card

PROCEDURES

Shuffle shuffles 52 cards
Split splits cards into four hands and calls sortem to sort each hand
Sortem sorts 13 cards in ascending order
Layout provides background colour border and table
Printem prints each line of card symbols
Getline gets one row of cards and converts numbers into the symbols

A,2,3,4,5,6,7,8,9,T,J,Q,K

PROGRAM DESIGN OUTLINE

1. Declare arrays, pick up 'tokens' and place 52 numbers in array card.
2. Shuffle cards.
3. Split into 4 hands and sort each.
4. OPEN screen window.
5. Fix the screen layout.
6. Print the four hands.
7. CLOSE the screen window.

100 DIM card(52),sort(13),tok$(4,2)

110 FOR k = 1 TO 4 : READ tok$(k)

120 FOR k = 1 TO 52 : LET card(k) = k

130 shuffle

140 split

150 OPEN #6,scr_440x220a35x15

160 layout

170 printem

180 CLOSE #6

190 DEFine PROCedure shuffle

200 FOR c = 52 TO 3 STEP -1

210 LET ran = RND(1 to c-1)

220 LET temp = card(c)

230 LET card(c) = card(ran)

240 LET card(ran) = temp

250 END FOR c

260 END DEFine

270 DEFine PROCedure split

280 FOR h = 1 TO 4

290 FOR c = 1 TO 13

300 LET sort(c) = card((h-1)*13+c)

310 END FOR c

320 sortem

330 FOR c = 1 TO 13

340 LET card((h-1)*13+c) = sort(c)

350 END FOR c

360 END FOR h

370 END DEFine

380 DEFine PROCedure sortem

390 FOR item = 2 TO 13

400 LET dart = item

410 LET comp = sort(dart)

420 LET sort(0) = comp

430 REPeat compare

440 IF comp >= sort(dart-1) : EXIT compare

450 LET sort(dart) = sort(dart-1)

460 LET dart = dart - 1

470 END REPeat compare

480 LET sort(dart) = comp

490 END FOR item

500 END DEFine

510 DEFine PROCedure layout

520 PAPER #6,4 : CLS #6

530 BORDER #6,10,0

540 BLOCK #6,100,60,150,60,2,4

550 END DEFine

560 DEFine PROCedure printem

570 LET inc = 12 : INK #6,7

580 LET p = 0

590 FOR seat = 1 TO 4

600 READ ac,dn

610 FOR row = 1 TO 4

620 getline

630 CURSOR #6,ac,dn

640 PRINT #6,1in$

650 LET dn = dn + inc

660 END FOR row

670 END FOR seat

680 END DEFine

690 DEFine PROCedure getline

700 IF row MOD 2 = 0 THEN STRIP #6,0

710 IF row MOD 2 = 1 THEN STRIP #6,2

720 LET lin$ = tok$(row)

730 LET max = row*13

740 REPeat one_suit

750 LET p = p + 1

760 LET n = card(p)

770 IF n >max THEN p = p-1 : EXIT one_suit

780 LET n = n MOD 13

790 IF n = 0 THEN n = 13

800 IF n = 1 : LET ch$ = "A"

810 IF n >= 2 AND n <= 9 : LET ch$ = n

820 IF n = 10 : LET ch$ = "T"

830 IF n = 11 : LET ch$ = "J"

840 IF n = 12 : LET ch$ = "Q"

850 IF n = 13 : LET ch$ = "K"

860 LET lin$ = lin$ & " " & ch$

870 IF p = 52 : EXIT one_suit

880 IF card(p)>card(p+1) : EXIT one_suit

890 END REPeat one_suit

900 END DEFine

910 DATA "H:","C:","D:","S:"

920 DATA 150,10,260,60,150,130,30,60

COMMENT

The program works in the 256 mode. But the various lines of card symbols may overlap
the "table" or overflow at the edge of the window. A simple change in procedure "getline"
from:

860 LET lin$ = lin$ & " " & ch$

to

860 LET lin$ = lin$ & ch$

will correct this. The spaces between characters disappear but the larger sized characters
enable the rows to be easily readable. The program thus works well in either graphics
mode.

CONCLUSION

We have tried to show how you can use SuperBASIC to solve problems. We have shown
how simple tasks can be performed in simple ways. When the task is inherently complex,
like manipulating arrays or designing screen graphics, SuperBASIC enables it to be
handled efficiently with maximum possible clarity.

If you were a beginner and you have worked through a fair proportion of this guide you will
have started well on the road to good programming. If you were already experienced, we
hope that you will appreciate and exploit the extra features offered by SuperBASIC.

So enormous is the range of tasks which can be done with SuperBASIC that we have only
been able to touch a fraction of them in this guide. We cannot guess at which of the
thousands of possibilities you will attempt, but we hope that you will find them fruitful,
stimulating and fun.

17 - ANSWERS TO SELF TESTS

ANSWERS TO SELF TEST ON CHAPTER 1

1. Use the BREAK sequence to abandon a running program because:

a) something is wrong and you do not understand it
b) it is longer of interest
c) any other problem (three points)

2. The RESET button is on the right hand side of the computer.

3. The effect of the RESET button is rather like switching the computer off and on again.

4. The SHIFT key:

a) is only effective while you hold it down whereas the CAPS LOCK key stays
effective after you have pressed it. (one
point)

b) The SHIFT key affects all the letter digit and symbol keys, but the CAPS LOCK
key affects only letters. (one point)

5. The CTRL  (CTRL left arrow) keys delete the previous character just left of the

cursor.

6. The  (ENTER) key causes a message or instruction to be entered for action by the

computer.

7. We use  for the ENTER key.

8. CLS  causes part of the screen to be cleared.

9. RUN  causes a stored program to be executed.

10. LIST  causes a stored program to be displayed on the screen.

11. NEW  clears the main memory ready for a new program.

12. Keywords of SuperBASIC are recognised in upper or lower case.

13. The part of a keyword displayed in upper case is the allowed abbreviation.

CHECK YOUR SCORE

14 to 16 is very good. Carry on reading.

12 or 13 is good, but re-read some parts of chapter one.

10 or 11 is fair, but re-read some parts of chapter one and do the test again.

Under 10. You should work carefully through chapter one again and repeat the test.

ANSWERS TO SELF TEST ON CHAPTER 2

1. An internal number store is like a pigeon hole which you can name and put numbers

into.

2. A LET statement which uses a particular name for the first time will cause a pigeon

hole to be created and named, for example
LET count = 1 (1 point)

A READ statement which uses a name for the first time will have the same effect, for
example:

READ count (1 point)

3. You can find the value of a pigeon hole with a PRINT statement.

4. The technical name for a pigeon hole is 'variable' because its values can vary as a

program runs.

5. A variable gets its first value when it is first used in a LET statement, INPUT statement

or READ statement.

6. A change in the value of a variable is usually caused by the execution of a LET

statement.

7. The = sign in a LET statement represents an operation:

'Evaluate whatever is on the right hand side and place it in the pigeon hole named
on the left hand side: that is 'Let the left hand side become equal to the right hand
side'.

8. An unnumbered statement is executed immediately.

9. A numbered statement is not executed immediately. It is stored.

10. The quotes in a PRINT statement enclose text which is to be printed.

11. When quotes are not used you are printing out the value of a variable.

12. An INPUT statement makes the program pause so that you can type data at the

keyboard.

13. DATA statements are never executed.

14. They are used to provide values for the variables in READ statements.

15. The technical word for the name of a pigeon hole is 'identifier'.

16. Example answers:

i. day
ii. day_23
iii. day_of_week (3 points)

17. The space bar is especially important for putting spaces after or before keywords so

that they cannot be taken as identifiers (names) chosen by the user.

18. Freely chosen identifiers are important because they help you to make programs

easier to understand. Such programs are less prone to errors and more adaptable.

CHECK YOUR SCORE

18 to 21 is very good. Carry on reading.

16 or 17 good but re-read some parts of chapter two.

14 or 15 fair, but re-read some parts of chapter two and do the test again.

Under 14 you should work carefuly through chapter two again and repeat the test.

ANSWERS TO SELF TEST ON CHAPTER 3

1. A pixel is the smallest area of light that can be displayed on the screen.

2. There are 256 pixel positions across the low resolution mode.

3. There are 256 pixel positions from top to bottom in the low resolution mode.

4. An address is determined by.

the up value, 0 to 100
the across value, 0 to a number computed by the system

5. There are eight colours available in the low resolution mode including black and white.

6.

1. LINE draws a line, e.g. LINE a,b TO x,y

2. INK selects a colour for drawing, e.g. INK 5

3. PAPER selects a background colour e.g. PAPER 7

4. BORDER draws a border, e.g. BORDER 1,5

7. REPeat name....END REPeat name.

8. A REPeat loop terminates when an 'EXIT name' statement is executed.

9. Loops in SuperBASIC have names so that it is possible to EXIT from them in a

straightforward way. It is not necessary to work out line numbers in advance.

CHECK YOUR SCORE

11 to 13 is very good. Carry on reading.

8 to 10 is good but re-read some parts of chapter three.

6 or 7 is fair but re-read some parts of chapter three and do the test again.

Under 6. You should work carefully through chapter three again and repeat the test.

ANSWERS TO SELF TEST ON CHAPTER 4

1. A character string is a sequence of characters such as letters, digits or other symbols.

2. The term, 'character string', is often abbreviated to 'string'.

3. A string variable name always ends with $.

4. Names such as word$ are sometimes pronounced 'worddollar'

5. The keyword LEN will find the length or number of characters in a string. For example,

if the variable meat$ has the value 'steak' then the statement:

PRINT LEN(meat$)

will output 5.

6. The symbol for joining two strings is &.

7. The limits of a string may be defined by quotes or apostrophes.

8. The quotes are not part of the actual string and are not stored.

9. The function is CHR$. You must use it with brackets as in CHR$(66) or with brackets

as in CHR$(RND(65 TO 67)).

10. You generate random letters with statements like:

lettercode = RND(65 TO 90)

PRINT CHR$(lettercode)

CHECK YOUR SCORE

9 or 10 is very good. Carry on reading.

7 or 8 is good but re-read some parts of chapter four

5 or 6 is fair but re-read some parts of chapter four and do the test again.

Under 5 You should work carefully through chapter four again and repeat the test.

ANSWERS TO SELF TEST ON CHAPTER 5

1. Lower case letters for variable names or loop names contrast with the keywords which

are at least partly displayed in upper case.

2. Indenting reveals clearly what is the extent and content of loops (and other structures).

3. Identifiers (names) should normally be chosen so that they mean something, for

example, count or word$ rather than C or W$

4. You can edit a stored program by:

replacing a line
inserting a line
deleting a line (three points)

5. The ENTER key must be used to enter a command or program line.

6. The word NEW will wipe out the previous SuperBASIC program in the QL and will

ensure that a new program which you enter will not be merged with an old one.

7. If you wish a line to be stored as part of a program then you must use a line number.

8. The word RUN followed by  will cause a program to execute.

9. The word REMark enables you to put into a program information which is ignored at

execution time.

10. The keywords SAVE and LOAD enable programs to be stored on and retrieved from

cartridges.(two points).

CHECK YOUR SCORE

12 to 14 is very good. Carry on reading.

10 or 11 is good but re-read some parts of chapter five.

8 or 9 is fair but re-read some parts of chapter five and do the test again.

Under 8 You should re-read chapter five carefully and do the test again.

ANSWERS TO SELF TEST ON CHAPTER 6

1. It is not easy to think of many different variable names for storing the data. If you can

think of enough names, every one has to be written in a LET statement or a READ
statement if you do not use arrays.

2. A number called the subscript, is part of an array variable name. All the variables in an

array share one name but each has a different subscript.

3. You must 'declare' an array giving its size (dimension) in a DIM statement usually

placed near the beginning of a program before the declared array is used.

4. The distinguishing number of an array variable is called the subscript.

5. Houses in a street share the same street name but each has its own number.

Beds in a hospital ward may share the name of the ward but each bed may be
numbered.

Cells in a prison block may have a common block name but a different number.

Holes on a golf course, e.g. the fifth hole at Royal Birkdale.

6. A FOR loop terminates when the process corresponding to the last value of the loop

variable has been completed.

7. A FOR loop's name is also the name of the variable which controls the loop.

8. The two phrases for this variable are 'loop variable' or 'control variable'.

9. The values of a loop variable may be used as subscripts for array variable names.

Thus, as the loop proceeds, each array variable is 'visited' once.

10. Both FOR loops and REPeat loops:

a. have an opening keyword:
REPeat , FOR

b. have a closing statement:
END REPeat name, END FOR name

c. have a loop name.
Only the FOR loop has

d. a loop variable or control variable. (four points)

CHECK YOUR SCORE

This test is more searching than the previous ones.

15 or 16 is excellent. Carry on reading.

13 or 14 is very good but think a bit more about some of the ideas. Look at programs to
see how they work.

11 or 12 is good but re-read some parts of chapter six.

8 to 10 is fair but re-read some parts of chapter six and do the test again.

Under 8 You should re-read chapter six carefully and do the test again.

ANSWERS TO SELF TEST ON CHAPTER 7

1. We normally break down large or complex jobs into smaller tasks until they are small

enough to be completed.

2. This principle can be applied in programming by breaking the total job down and
writing a procedure for each task.

3. A simple procedure is:

a separate block of code
properly named. (two points)

4. A procedure call ensures that:

the procedure is activated
control returns to just after the calling point. (two points)

5. Procedure names can be used in a main program before the procedures have been

written. This enables you to think about the whole job and get an overview without
worrying about the detail.

6. If you write a procedure definition before using its name you can test it and then when

it works properly forget the details. You need only remember its name and roughly
what it does.

7. A programmer who can write up to thirty line programs can break down a complex task

into procedures in such a way that none is more than thirty lines and most are much
less. In this way he need only worry about one bit of the job at a time.

8. The use of a procedure would save memory space if it is necessary to call it more than

once from different parts of a program. The definition of a procedure only occurs once
but it can be called as often as necessary.

9. A main program can place information in 'pigeon-holes' by means of LET or READ

statements. These 'pigeon holes' can be accessed by the procedure. Thus the
procedure uses information originally set up by the main program.

A second method is to use parameters in the procedure call. These values are passed
to variables in the procedure definition which then uses them as necessary.

10. An actual parameter is the actual value passed from a procedure all in a main program

to a procedure.

11. A formal parameter is a variable in a procedure definition which receives the value

passed to the procedure by the main program.

CHECK YOUR SCORE

This is a searching test. You may need more experience of using procedures before the
ideas can be fully appreciated. But they are very powerful and, when understood,
extremely helpful ideas. They are worth whatever effort is necessary.

12 to 14 excellent. Read on with confidence.

10 or 11 very good. Just check again on certain points.

8 or 9 good but re-read some parts of chapter seven.

6 or 7 fair but re-read some parts of chapter seven. Work carefully through the programs
writing down all changes in variable values. Then do the test again.
Under 6 read chapter seven again. Take it slowly working all the programs. These ideas
may not be easy but they are worth the effort. When you are ready, take the test again.

