Sinclair QL Exploring 3D Rotation Graphics

s NI - O -
QL Commands Screen Llanguage Help

an On/oF Bl 30 Rotation I:ir-|]|: IS

Rl 3 H g i148 quyilza

CLYPyromid

aex N =

QL Commands Screen Llanguage Help

48 gy lEa

CEEe

QL Commands Screen Language Help

On/Off

rrid ryidd rzild geeldld guiled usi2d fea0en

QBITS Exploring QL 3D Rotation Graphics

QBITS on Animation

Magic Lanterns with flickering hand drawn cards, later replaced with
photography pictures, all were used in the attempt to create the illusion of
movement. The first motion sequence photographed in real-time was created in
1878 by British photographer Eadweard Muybridge. W. K. L. Dickson an
Edison employee developed the Kinetoscope (a peep-hole motion picture
viewer), introduced at the US Chicago World Fair of 1893. In France the
Lumiere brothers made the first public screening of ten short films in 1895 and
as they say the motion picture industry was born.

In much the same way the availability of home computing in the 1980’s sparked
myself and others interest in creating computer generated moving graphics,
especially when it involved the manipulation of 3D images.

QBITS 3D Graphics

Unfortunately back in my early days of programming with QL SuperBASIC,
such things as 3D Rotation Graphics was a little out of my league and probably
still is. However | did jot down some notes amongst my future aspirations.

So having involved myself with QL SuperBASIC again | thought it was time to
give 3D Rotation Graphics a bit of a spin (sorry for the pun). However what was
my goal, the basic code for revolving a simple wireframe object for one. To
move say a Cube about the screen, altering its global position and being able to
zoom in and out. Create the illusion of perspective perhaps that has something
to do with focal scale, but more about that later. As a finishing touch fill the
visible surfaces of my wireframe to create a solid object.

Depending on what source you refer to or your own background you might
come across a few variation on the terms used for 3D rotation. The most
common being Roll, Pitch and Yaw associated with flying. | thought of others
Rotate, Circulate Orbit, Spin, Loop. For my 3D Rotation Graphics | decided on
Loop, Spin & Roll. All just happen to be four letter words, a little conformity in
computer programming always a good thing.

Page 1

https://en.wikipedia.org/wiki/Eadweard_Muybridge

QBITS Exploring QL 3D Rotation Graphics

Exploring 3D Rotation Graphics

So where to start... with a two dimensional object, its outline points of reference
are depicted by xy coordinates. Moving position alters what is displayed, this is
achieved by changing the xy coordinates values a number of x points across the
screen (left to right) and by the number of y points (up or down) the screen.
When an object is moved to a new position, without changing its shape or size,
this is a translation.

A three dimensional object requires a third coordinate, usually assigned as z.
Three dimensional rotation changes the orientation within each of its relative
axis. This alters the shape and size viewed and is known as a transformation.
Converting a three dimensional object onto a two dimensional screen image
requires manipulation of 3D coordinates into 2D coordinates. The coding for
such requires a number of steps and involves basic trigonometry.

Y Axis Spin (Revolving around Y Axis)

é y¥xis

Flat Screen
z Axis

Axis .

e X Axis

Loop
k II (Revolvingaround X Axis)
x Axis / \
/
/7 .
s Z AXis
e Il (Revolving aroundZ Axis)

Imaginary Eye View

Reviewing the diagram shown, looking at a flat screen it is easy enough to
imaging the x y coordinates. For three-dimensional space, we need to look at
points that lie in front and behind the screen. Using a Cube as our object in space
half is sticking out from the front of the screen surface, the other half lying
behind. Looking face on to the screen, you see a square, when you stand over the
screen and look straight down you also see a square (half poking out the front,
half poking out the back). Looking directly from left or right of the screen, again
you see a square half out the front and half out the back

Page 2

QBITS Exploring QL 3D Rotation Graphics

Initialising xyz coordinates

Each point of reference that connects a 3D Object, be it a simple Cube or
multisided polyhedron | shall refer to as a Node. These points (Nodes) identify
the Objects coordinates to draw a Wireframe as referenced to each of its axis.
The centre of the Cube is given as a Global x,y position. Following the red
arrows <see below> Node (1) is shown on the X axis as +x units from gy [x=0].
On the Y axis it rises above the gx [y=0] by +y units. Looking down from above
we can also see it lies in front of the screen on the Z axis, this places the object
closer to us so here we can give it a value of —z units.

Y Axis

Z Axis

Node 5(10,10,10)

Node 2(-10,10,-1

X Axis

Node\ 7 (-§0,

(10,-10,10)

Node 3 (-10,-10,-10)

ode 4(10,-10£10)

DATA 8 :REMark Number of Nodes
Node(1) xyzis 10, 10,-10 DATA 10, 10,-10
Node (2) xyz is -10, 10,-10 DATA -10, 10,-10
Node (3) xyz is -10,-10,-10 DATA 10,-10,-10
Node (4) xyz is 10,-10,-10 DATA 10,-10,-10
Node (5) xyz is 10, 10, 10 DATA 10, 10, 10
Node (6) xyz is -10, 10, 10 DATA -10, 10, 10
Node (7) xyz is -10,-10, 10 DATA -10,-10, 10
Node (8) xyz is 10,-10, 10 DATA 10,-10, 10

As a set of DATA lines the above can be fed into an Array to keep the basic
configuration information. This will apply to not only our Cube but with any
polyhedron and its multiple Nodes.

DIM x(n),y(n),z(n) where n is the number of Nodes of our polyhedron.

Page 3

QBITS Exploring QL 3D Rotation Graphics

Vector Calculations

A Vector is described as a distance in a particular direction. For our purposes
this represents the lines drawn between Nodes to present our object in a wire
framework. Vectors are calculated as xy screen coordinates derived from a
Global xy set at the centre of our object and each Node xyz coordinate.

To create our 3D Object we use trigonometry to find the position of a rotating
point (X y) set around a central origin at a distance (r) and by degrees (a).
X =T, COS(a)
y =1 SIN(a)
If we then rotate further the angle to b:
X'=r1,COS(a + b)
y' =1, SIN(a+b)
By using trigonometric addition of each equation:
X'=r1, COS(a) COS(b) - r « SIN(a) SIN(b)
y' =T, SIN(@) COS(b) + r COS(a) SIN(b)

Then substituting in the values for x and y above, we get an equation for the

new coordinates as a function of the old coordinates and the angle of rotation:
X'=X x« COS(b) - y « SIN(b)

y' =y« COS(b) + X « SIN(b)

The above describes one plane we have three XYZ. For now we can combine

the required function for COS and SIN of the angle to be used with each plane:
ra=+.5: ¢ = COS(ra) : s = SIN(ra)

Then the code for position in each plane is as follows:
yt=y:y=cyyt—sy,z:z=s,yt+cy,z Xaxis(y, z planes)
Xt=X:X=CcyXt+s,z:2=syxt+cyz Y axis (X, z planes)
Xt=X:X=CyXt—Syy:y=syXt+cyy Zaxis (x, Yy planes)

Where yt, xt hold the previous X, y coordinate values. The X y z are updated

with new values. Following this the 3D coordinates are transposed into 2D

screen positions with the following:

VX = gX + (X xTs) / (z + fs)

vy =gy +(yxfs)/(z +fs)
Where gx,gy are the global coordinates and fs is a scale factor that determines
how much we have zoomed in or out from an imaginary focal point.

The above vector calculation for each Node vx(n) and vy(n) screen coordination
can be set within a FOR loop and stored in a Dimensioned Array.

DIM vx(n),vy(n) where n is the same as the number of Nodes

Page 4

QBITS Exploring QL 3D Rotation Graphics

QB3D Movement & Conversion

Movement is accomplished in a number of ways; movement across the screen is
repositioning the Objects Global xy coordinates. This is achieved by use of the
cursor keys changing the gx,gy values. Rotary movement is a change of angle in
one of the three planes xy, zy, zx Roll/Spin/Loop. Pressing any of the zZxXyY
keys alters the angle for its corresponding plane. These are then processed by
the Procedure Obj_Calc.

280 DEFine PROCedure Obj_Calc
282 cx=COS(rx):sx=SIN(rx)

284 cy=COS(ry):sy=SIN(ry)

286 cz=COS(rz):sz=SIN(rz)

288 FOR np=1 TO no
290 yt=y(np):y(np)=
292 xt=x(np):x(np)=
294 xt=x(np):x(np)=
296 vx(np)=gx+(x(n
298 vy(np)=gy+(y(n
300 END FOR np
302 END DEFine

CX*yt-sx*z(np):z(np)=sx"yt+cx*z(np)
=cy*xt+sy*z(np):z(np)=sy*xt+cy*z(np)
cz*xt-sz*y(np):y(np)=sz*xt+cz*y(np)
p)*fs)/(z(np)+fs)

p)*fs)/(z(np)+fs)

Part of this calculation is the Focal scale (fs). Imagine a large building from a
distance its shape is fairly uniform. Standing at one corner, the height above us
as opposed to the height of the building further down the street appears out of
proportion to its true measurement. This is what we understand as perspective,
the appearance of things relative to one another as determined by their distance
from the viewer and is the technique of representing three-dimensional objects
on a two-dimensional surface.

Using keys D or I, fs can be Decreased or Increased between 80 and 800. If you
reduce the fs value below 80 the image distorts and becomes a little weird. The
affect of fs at its lower vales also slightly enlarges the Object.

QB3D Vector Size

To avoid the obvious distortion of fs this led me to look for a way to Enlarge or
Reduce an Obijects size. The process of reading and storing the Nodes xyz
values gave me the idea of adding a multiplier and thereby being able to expand
or reduce an Objects size in a uniform manner. The vector size vs is simply that
with a range from 0.5 to 1.5 in 0.1 increments.

292 DEFine PROCedure Obj_Array

294 LOCal Ip,a,b,c :RESTORE nres :READ no

296 FOR Ip=1 TO no

298 READa)b,c x(Ip)=a*vs :y(Ip)=b*vs :z(Ip)=c*vs
300 END FOR Ip

302 END DEFine:

Page 5

QBITS Exploring QL 3D Rotation Graphics

QB3D Nodes, Vectors & Frames

Displaying our Cube we might begin by reviewing its components. A Cube has
eight coordinate points (Nodes) and six sides (Frames). As with any polyhedron
we will need to identify the number of Nodes, their xyz values from which we
calculate Vector values vx, vy for the 2D screen coordinates. Having these we
can work out each Frame and its group of coordinates.

QB3D Screen Display

A Frame is the area contained within a set of linked Nodes. What is needed is a
DATA set to identify these linked Nodes to our program. The SuperBASIC
LINE function can then be used to draw the shape of each to construct a
Wireframe of the Object.

vres DATA 6
Frame (1) Vectora-b-c-d DATA8,7,6,5
Frame (2) Vectora-b-c-d DATA 2,6,7,3
Frame (3) Vectora-b-c-d DATA 4,3,7,8
Frame (4) Vectora-b-c-d DATA5,1,4,8
Frame (5) Vectora-b-c-d DATA5,6,2,1
Frame (6) Vectora-b-c-d DATA 1,234

RESTORE vres :READ vn
FORIp=1TOvn

READ a,b,c,d

LINE vx(a),vy(a) TO vx(b),vy(b) TO vx(c),vy(c) TO vx(d),vy(d) TO vx(a),vy(a)
END FOR Ip

A FOR loop with READ function calls upon the lines of DATA that provide the
instruction set to load and build the Wireframe. The order in which they are
presented has a significance that will be explained later when exploring how
Wireframe images are turned into Solid images.

QB3D Node ID

At this point it would seem logical to include the ability to identify the Nodes
displayed in their screen positions as part of an Objects image. Pressing the N
key toggles On/Off nset, which actions the print of Node ID’s. For this | make
use of the CURSOR graphics coordinate system:

IF nset=1 :CURSOR vx(n),vy(n),-2,2 :PRINT n (n being the Node number)

Note: When using the xXyYzZ keys to Loop/Spin/Roll respectively, once an
Object has been rotated from its initial position the Roll/Loop and Spin key
commands can act differently to what maybe expected. The position of the
Z,X,Y axis become changed and so rotate in altered planes. An example of this
is where the actions of xX (Loop) and yY (Spin) can be reversed.

Page 6

QBITS Exploring QL 3D Rotation Graphics

QB3D Wireframe to Solid Objects

As a Frame is by definition a closed area we have the option to leave it unfilled
as a Wireframe or coloured in to create a Solid Object using the SuperBASIC
FILL function.

The frame sequence mentioned on the previous page loads those Frames hidden
from view first with the ones covering the viewed surfaces last. The problem is
as the Object image is rotated away from initial settings in any of its three axis
then the sequence of Frames hidden from view and those that come into view
will change. The row of images below show the initial load and display of
Frame surfaces for our Cube, and then the back frame as it Spins and Loops to
different positions on screen, some hidden and some in view.

N\

M) N
ﬁ Rotation Yaxis

i 4
)
\,j

QB3D XYZ Rotation
As an object is rotated in any of the three axis, as already mentioned the actions
of the programs function keys xXyYzZ change. In the example shown rotation
around the Z axis the actions of Spin and Loop change as it moves through
each quadrant. Hopefully my diagram above explains this better than | can put

into words. This shows the complexity you may face when writing code to
display the image of a rotating 3D object.

O - X O X

'Y

Page 7

QBITS Exploring QL 3D Rotation Graphics

QB3D Hidden Surface Removal

However all is not lost. In Exploring QL 3D Rotation Graphics | have used
planar polygons of which each Frame surface has a unique property. It has two
sides, one which looks internally and the other outwardly. Therefore by
determining the outward direction of a frames surface we can then use this to
identify if it is pointing away or towards our view point.

The two basic types of hidden surface removal are object-space used for three
dimensional processing and image-space used for two dimensional processing
when determining hidden surfaces.

As the above title implies a method is sought to remove those hidden surfaces
(Frames) of an object to provide a more realistic representation. Namely we seek
an algorithm that identifies those frame surfaces of an object that are not seen
from the view point. The most common method used in computing for carrying
out this action is called the plane equation method.

In simple terms you compute a Vector Normal to a plane (Frame surface) such
that its value indicates whether it is facing away from or towards the viewer. |
have used the counter or anti clockwise coordinates system for defining my
Frames. This is known as the left handed rule for the plane equation shown
below. (The is an alternative called the right handed or clockwise system)

These are based on the equation: Ax+By+Cz+D=0
where the Vector Normal (N) to the plane is N=[A B C]
and where C > 0 is a surface facing away
and where C<=0 is a surface facing towards the viewer.

Obtaining the Vector Normal we use an equation based on the plane passing
through three points: P1=(x1, y1, z1), P2= (x2, y2, z2), P3=(x3, y3, z3):

Xx-xlyl-ylz-z1
X2-x1y2-y1z2-x1=0
x3-x1y3-ylz3-x1
This is equivalent to: Ax+By+Cz+D=0
and where C=(x2 —x1)*(y3 —yl) — (x3 —x1)*(y2 — y1)

C is the value we are interested in to determine the outward facing direction of
the Frame surface and whether it is towards or away from the viewer.

Page 8

QBITS Exploring QL 3D Rotation Graphics

QB3D Anti Clockwise Coordinate system

Going back to our Frame DATA lists you will notice that the Nodes for the front
facing surface are 1,2,3,4 and are ordered in an anticlockwise manner. The back
face 5,6,7,8 in the DATA list is ordered as 8,7,6,5 or clockwise. However if you
were to view this surface rotated 180 degrees to the front 8,7,6,5 is counting in
an anticlockwise direction.

DATA8,7,6,5,bg2 :REMark back Frame [bg2 = background Ink colour] ‘0
DATA 2,6,7,3.2 3 i

DATA 43,784
DATA5,1,48,3
DATA5,6,2,1,5
DATA1,2,3,4,bg2 :REMark front Frame
g -ﬂ-"' !
4
QB3D Obj_Cull

To obtain the Vector Normal of the Frame surface the three points P1,P2,P3
from the equation are substituted by three of the Frames Node xy coordinates.
Inthiscase x(a), y(a) x(b), y(b) x(c), y(c)

C=(x(b)-x(@))*(v(c)-y(a)-(x(c)-x(@))*(y(b)-y(a))

QB3D Obj_Draw

We now have all the elements required to draw our objects image to screen, the
Node xyz coordinates, the Vector vx,vy coordinates, the Frame instruction set
and a method of eliminating hidden frames.

205 DEFine PROCedure Obj_Draw

206 LOCal Ip,v,a,b,c,d,i:RESTORE vres:READ v

207 iset=2:0bj_Calc

208 FOR Ip=1TO v

209 READab,cd,i

210 IF cset=1:INK bg2:FILL 0:END IF

211 IF cset=2:0bj_Cull:IF ¢1>0:GO TO 214:END IF :INK bg2:FILL 0:END IF

212 IF cset=3:0bj_Cull:IF ¢1>0:GO TO 214:END IF :INKi :FILL 1:END IF

213 LINE vx(a),vy(a) TO vx(b),vy(b) TO vx(c),vy(c) TO vx(d),vy(d) TO vx(a),vy(a):FILL O
214 END FOR Ip

215 Obj_Node:IF nset=2:INK bg2:FOR n=1 TO no:CURSOR vx(n),vy(n),-2,2:PRINT n
216 END DEFine

QB3D Solid Object Mode

To control the Wireframe in default mode colour set cset=1 and all of the
Wireframe is drawn to screen. If cset=2 the procedure Obj_Cull is used to
eliminate hidden frames and a Solid Wireframe is displayed. If cset=3 again
Obj_Cull is used to eliminate hidden frames, but the viewed frame surfaces are
now FILLed. The colour for these frame surfaces is the fifth value entered on
my Frame DATA lines (see DATA lines for the Cube above).

Page 9

QBITS Exploring QL 3D Rotation Graphics

QB3D Wireframe Design

To expand on the simple wireframe objects of Pyramid, Cube and Hexagon |
have included my Space Shuttle. First draw your object with an overview
including front and side elevations. Map this to the XYZ planes, then identify
the Nodes (xyz) and their relevant units of distance +/- values. Then create a
DATA list of each Node xyz value.

Here’s the basic layout design for my Space Shuttle.

Y axis

¢ |Zaxis Node 6 (=x, -y +2) Z axis 13 Zaxis |43

5 8 12 14 12

18 15 30 2 2
§ :
20 o - < 16 3
17 L_|s 20 2
\/4 1 < 20 11 9 11

3 | Node 3 (-x, 0, -z) 3 10 10
Y axis Node 9 (+x,+y.-z)
4 9
Xaxis 1 / 3 Xaxis
Nodel (-x, 0.-z)
40 g
2 12 | Node 12 (+x.-y,+z)

To generate the Wireframe a second list is required linking Nodes to form
Frames. These are READ and used by the Plane Equation of Obj_Cull to
determine if the outward surface of the polygon is facing towards or away from
point of observation. It is therefore important they are ordered correctly, that is
Counter or anticlockwise.

These DATA lists can be added to or created within a new QB3D_Data file
following the format presented on pages 18,19,20. Remember to type in the
RESTORE references nres, vres into OBj_Init and Object names into the
Obj_Name Procedure so they appear on the screen layouts.

Page 10

QBITS Exploring QL 3D Rotation Graphics

QB3D Background

While deciding on useful things for the program it occurred to me that a user
might prefer a Black or White background. Pressing B or W changes the colour
of PAPER (bgl) and INK. (bg2) either a Black background with white INK, or
White background with black INK.

QBITS 3D Programs

Version 3 code has been developed using QL2K and SMSQ emulators running
under Windows 7. There are four programs, the first is initial trial of xyz
rotation code. The second and third are the Wireframe programs with
commands that allow manipulation of parameters controlling various aspects of
movement, size and perspective. The fourth provides Node and Frame Data to
configure four Objects a Pyramid, Cube, Hexagon and my Space Shuttle.

QB3D_Cube Basic code to rotate a Cube.

QB3D_Wire512v3 Program for standard QL 512x256 screens.
QB3D_Wire768v3 For the SMSQ 768x512 screen and 16 bit colour.
QB3D_Data03 Data coding for Pyramid, Cube, Hexagon, Shuttle

QB3D QL Platforms

The QB3D_Wire512 Mode 4 screen 512x256 was loaded and run with a
QemulLator in basic QL user Mode original speed and with 128k memory. It’s
very slow.

QB3D_Wire512 has been checked with the QL2K set with a clock multiplier
of 1000 and the SMSQ emulators. The best results were obtained with the
QB3D_Wire768 version developed with the SMSQmulator. This takes
advantage of the greater screen resolutions and 16bit colour.

History Notes:

Version 02a The Roll./Spin/Loop Graphics linked to the motion of Object.
Some improvements to control xyz range of angle and changes to default
Increase/Decrease in fs and gx, gy variables. Additional toggle switch settings.
Change of names to some Procedures.

Version 03 Includes Solid Object Frames and added procedure Obj_Cull.
Future Thoughts:

I guess a Companion Program to construct Wireframe Objects and generate
their Node, Vector and Frame DATA lists would be useful.

Page 11

QBITS Exploring QL 3D Rotation Graphics

QB3D_Wire Procedures

Set up of Screen windows and common variables MERGE QB3D_Data01.

QB3D_Init Sets screen layout and KEY information.
Obj_Name Displays Object Names on screen menu
Obj_Init Sets the DATA RESTORE references for Object.
QB3D_Coms Serves as main Menu loop to access functions.

gx,gy Screen global positioning

vector sizes Enlarge / Reduce Object size

focal scale Increase Decrease Focal distance

fF Wireframe (default) <f >Solid frame <F>Surface FILL
XxYyZz Loop / Spin/ Roll Object

BW Change Screen background (Black/White)
Obj_Auto Sets auto Loop/ Spin/ Roll of Object
Obj_Ang Updates and Draws Loop/ Spin/ Roll Angle Graphics.
Obj_Calc Calculates new vx,vy coordinates of Object.
Obj_Draw Draws Object to screen.
Obj_Wipe Wipes existing Object
Obj_Node Loads Node xyz and sets vector size.
Obj_Cull Identifies hidden frames
QB3D_Wire Flowchart Init Sreens

MERGE QB3D_DATAO1

QB3D_lInit

FramefFILL

Page 12

QBITS Exploring QL 3D Rotation Graphics

This is the basic Program for 3D Rotation Graphics

100 REMark QB3D_Cube (Rotating Cube)

102 :

104 MODE 4:WINDOW 512,200,0,0:PAPER 0:INK 4:CLS:SCALE 100,0,0

106 DIM x(8),y(8),z(8),vx(8),vy(8)
108 vI=16:fs=10000:ra=.1

112 CLS

114 x(1)=-vl:y(1)=-vl:z(1)=-vl

116 x(2)=-vl:y(2)=+vl:z(2)=-vI
118 x(3)=+vl:y(3)=+vl:z(3)=-vI
120 x(4)=+vl:y(4)=-vl:z(4)=-vI
122 x(5)=-vl:y(5)=-vl:z(5)=+vI
124 x(6)=-vl:y(6)=+vl:z(6)=+vI
126 x(7)=+vly(7)=+vl:z(7)=+vl
128 x(8)=+vl:y(8)=-vl:z(8)=+vI

132 ra=ra+.1:c=C0OS(ra):s=SIN(ra)

136 FOR np=1TO 8
138 REMark Rotation on X Axix

:REMark Vector length : Focal point: Rotation angle

:REMark Nodes

140 yt=y(np):y(np)=c*yt-s*z(np):z(np)=s*yt+c*z(np)

142 REMark Rotation on Y Axis

144 xt=x(np):x(np)=c*xt+s*z(np):z(np)=s*xt+c*z(np)

146 REMark Rotation on Z Axis

148 xt=x(np):x(np)=c*xt-s*y(np):y(np)=s*xt+c*y(np)
150 REMark Points Projections and Translations to Screen Coordinates

152 vx(np)=80+(x(np)*fs)/(z(np)+fs)
154 vy(np)=50+(y(np)*fs)/(z(np)+fs)
156 END FOR np

160 LINE vx(1),vy(1) TO vx(2),vy(2)
162 LINE vx(2),vy(2) TO vx(3),vy(3)
164 LINE vx(3),vy(3) TO vx(4),vy(4)
166 LINE vx(4),vy(4) TO vx(1),vy(1)
168 LINE vx(5),vy(5) TO vx(6),vy(6)
170 LINE vx(6),vy(6) TO vx(7),vy(7)
172 LINE vx(7),vy(7) TO vx(8),vy(8)
174 LINE vx(8),vy(8) TO vx(5),vy(5)
176 LINE vx(1),vy(1) TO vx(5),vy(5)
178 LINE vx(2),vy(2) TO vx(6),vy(6)
180 LINE vx(3),vy(3) TO vx(7),vy(7)
182 LINE vx(4),vy(4) TO vx(8),vy(8)
186 PAUSE 5

188 GO TO 112

:REMark Vectors - Draws A Cube

Page 13

QBITS Exploring QL 3D Rotation Graphics

This is the QBITS 3D programs to run on most QL Platforms.

QB3D_Wire512v2a
QB3D_Data02

100 REMark QB3D_Wire512v2a (Exploring QL 3D Rotation Graphics v.02a)

102 MODE 4:0PEN#4,con_10x10a10x10_4

103 OPEN#3,scr_134x108a6x100:PAPER#3,1:SCALE#3,100,0,0:CSIZE#3,0,0

104 WINDOW#2,512,256,0,0:PAPER#2,0:CLS#2:WINDOW#2,512,208,0,0

105 WINDOW#1,364,182,142,26:BORDER#1,1,2:PAPER#1,0:INK#1,7:CLS:SCALE 200,0,0
106 WINDOW#0,496,40,8,210

108 gx=140:gy=120:fs=800:vs=.8 :REMark Angle:Global xy:focal scale:vector size
109 aset=-1:cset=1:nset=2:iset=1 :REMark Toggle switches
110 bg1=0:bg2=7:k=49:wres=512 :REMark Screen settings

112 MERGE flp1_QB3D_Data03
114 QB3D_Init:Obj_Name:Obj_Init:QB3D_Coms

116 DEFine PROCedure QB3D_Init

117 ch=1:CSIZE#ch,0,0:INK#ch 4

118 ch=2:CSIZE#ch,0,1:INK#ch,4

119 CURSOR#ch,300,6:PRINT#ch,'Exploring QL 3D Rotation Graphics'
120 CSIZE#ch,0,0:INK#ch,7

121 CURSOR#ch,6,14:PRINT#ch,'KEYS: Toggle animation On/Off <spacebar>'
122 INK#ch 4

123 CURSORY#ch,6,26:PRINT#ch,'Global x y :<¢=4¥ = >'
124 CURSOR#ch,6,36:PRINT#ch,'Focal Scale :<D I>'

125 CURSOR#ch,6,66:PRINT#ch,'frame/FILL :<f F>'
126 CURSOR#ch,6,46:PRINT#ch,'Node ID On/Off:<N>'

127 CURSOR#ch,6,56:PRINT#ch,'Vector Size <E R>'
128 CURSOR#ch,6,76:PRINT#ch,'Rotation: Xx Yy ZZ'

129 CURSOR#ch,6,86:PRINT#ch,'Background :<B W>'
130 ch=3:BORDER#ch,1,3:INK#ch,2:CLS#ch

131 CURSOR#ch,80,82:PRINT#ch,'Loop'

132 CIRCLE#ch,60,48,24,.25,0:LINE#ch,36,48 TO 60,48
133 INK#ch 4

134 CURSOR#ch,40,4:PRINT#ch,'Spin'

135 CIRCLE##ch,36,76,24,.25,P1/2:LINE#ch,36,48 TO 36,76
136 INK#ch,7

137 CURSOR¥ch,30,94:PRINT#ch,Roll'

138 CIRCLE##ch,26,40,24,.8,0:LINE#ch,26,40 TO 36,48

139 INK#ch,7

140 CURSOR¥ch,2,2:PRINT#ch, ANGLE'

141 END DEFine

Page 14

QBITS Exploring QL 3D Rotation Graphics

This is the QBITS SMSQ version with screen size 768x512and 16bit colour.

QB3D_Wire768v2a
QB3D_Data02

100 REMark QB3D_Wire768v3 (Exploring QL 3D Rotation Graphics v3)

101:

102 MODE 4:0PEN#4,con_10x10a10x10_4

103 OPEN#3,scr_160x160a20x178:PAPER#3,0:SCALE#3,100,0,0:CSIZE#3,0,0
104 WINDOWH#2,768,512,0,0:PAPER#2,0:CLS#2:WINDOW#2,754,460,8 4

105 WINDOWH##1,548,428,200,32:BORDER#1,1,5:PAPER#1,7:INK#1,0: CLS#1:SCALE#1,320,0,0
106 WINDOWH#0,732,40,16,460

107 :

108 gx=140:g9y=120:fs=800:vs=.8 :REMark Angle:Global xy:focal scale:vector size
109 aset=-1:cset=1:nset=2:iset=1 :REMark Toggle switches

110 bg1=7:bg2=0:k=49:wres=768 :REMark Screen settings

1M1

112 MERGE flp1_QB3D_Data03

113:

114 QB3D_Init:Obj_Name:Obj_Init:QB3D_Coms

115:

116 DEFine PROCedure QB3D_Init

117 ch=1:CSIZE#ch,0,0:INK#ch,4

118 ch=2:CSIZE#ch,1,1:INK#ch,5:0VER#ch, 1

119 FOR i=1 TO 3:CURSOR#ch,460+i,6:PRINT#ch,'Exploring QL 3D Rotation Graphics'
120 OVER#ch,0:CSIZE#ch,0,1:INK#ch,6

121 CURSOR#ch,12,6:PRINT#ch,'KEYS: Toggle animation On/Off <spacebar>'
122 INK#ch,5

123 CURSOR#ch,12,30:PRINT#ch,'Global x y 0 S L 2

124 CURSOR#ch,12, 50:PRINT#ch,'Focal Scale :<D |>'

125 CURSOR#ch,12, 70:PRINT#ch,'frame/FILL :<f><F>'

126 CURSOR#ch,12, 90:PRINT#ch,'Node ID On/Off:<N>'

127 CURSOR#ch,12,110:PRINT#ch,'Vector Size :<E R>'

128 CURSOR#ch,12,130:PRINT#ch,'Rotation: Xx Yy ZZ'

129 CURSOR#ch,12,150:PRINT#ch,'Background :<B W>'

130 ch=3:BORDER#ch,1,3:INK#ch,3:CLS#ch

131 CURSOR#ch,120,130:PRINT#ch,'Loop'

132 CIRCLE##ch,60,48,24,.25,0:LINE#ch,36,48 TO 60,48

133 INK#ch,5

134 CURSOR#ch,40,8:PRINT#ch,'Spin'

135 CIRCLE##ch,36,76,24,.25,P1/2:LINE#ch,36,48 TO 36,76

136 INK#ch,6

137 CURSOR#ch,30,140:PRINT#ch, Roll'

138 CIRCLE#ch,26,40,24,.8,0:LINE#ch,26,40 TO 36,48

139 INK#ch,7

140 CURSOR#ch,2,2:PRINT#ch, ANGLE'

141 END DEFine

Note: QB3D_Wire768 uses window sizes above the range of Basic QL 512x256 and with 16bit colour.
Hence the WINDOW size and CURSOR xy pixel coordinates are set to utilise the increased resolution as is
use of the 8 colour palette available.

Page 15

QBITS Exploring QL 3D Rotation Graphics

Program from here on the same apart from some Global gy and CURSOR settings

143 DEFine PROCedure QB3D_Coms
144 REPeat com

145 SELect ON k

146 =27 :CLOSE#3#4:INK#2,7.STOP

147 =66,98 :bg1=0:bg2=7:PAPER#1,0:CLS#1 :REMark (B)lack background
148 =87,119:bg1=7:bg2=0:PAPER#1,7:CLS#1 :REMark (W)hite background
149 =49,50,51,52,53 :iset=1:0bj_Ang:Obj_Init :REMark Load Object DATA
150 =32 :IF aset=-1:aset=5:ELSE aset=-1 :REMark Toggle animation

151 =102 :IF cset=1 OR cset=3:cset=2:ELSE cset= 1 :REMark (fjrame On/Off

152 =70 :IF cset=1 OR cset=2:cset=3:ELSE cset=1 :REMark (F)ILL On/Off

153 =78,110:IF nset= 1:nset=2:ELSE nset=1 :REMark (N)ode ID On/Off

154 =69,101:vs=vs+.1 :IF vs>=1.5 vs=1.5 :REMark (E)xpand Vector size
155 =82,114:vs=vs-.1:IF vs<=.5 vs= 5 :REMark (R)educe Vector size
156 =68,100:fs=fs-10 :IF fs< 80 :fs=80 :REMark (D)ecrease Focal scale
157 =73,105:fs=fs+10 :IF fs>800 :fs=800 :REMark (I)ncrease Focal scale
158 =192 :0x=gx-10 :IFgx<=20 :gx=20 :REMark = move left

159 =200 :gx=gx+10 :IF gx>=280 :gx=280 :REMark =» move right

160 =208 :gy=gy+10 :IF gy>=190 :gy=190 :REMark 4 move up

161 =216 :g9y=gy-10 :IF gy<=10 :gy=10 :REMark & move down

162 =88 iiset=1:0bj_Ang:rx=rx-5: :IF rx< 0:rx=rx+360 :REMark (X) Clockwise Loop
163 =120 iiset=1:0bj_Ang:rx=rx+5 :IF rx>360:rx=rx-360 :REMark (x) Anti- Loop

164 =89 iiset=1:0bj_Ang:ry=ry-5 :IF ry< O:ry=ry+360 :REMark (Y) Clockwise Spin
165 =121 iiset=1:0bj_Ang:ry=ry+5 :IF ry>360:ry=0 :REMark (y) Anti- Spin

166 = 90 iiset=1:0bj_Ang:rz=rz-5 :IF rz< 0rrz=rz+360 :REMark (z) Clockwise Roll
167 =122 iiset=1:0bj_Ang:rz=rz+5 :IF rz>360:rz=rz-360 :REMark (Z) Anti- Roll

168 END SELect

169 Obj_Wipe:Obj_Draw:INK bg2

170 IF aset=5:iset=1:0bj_Auto:ELSE Obj_Ang

171 CURSOR 168,168:PRINT 'gx:'&gx&" gy:'&gy&' vs!'&(vs*20)&" fs:!'&fs&'

172 CURSOR 12,168:PRINT 'rx:'&rx&' ry:'&ry&' rz:'&rz&' '

173 k=CODE(INKEY$(#4,aset))

174 END REPeat com

175 END DEFine

Note: QB3D_Wire768 higher screen resolution.
160 :IF gy>=300:gy=300
161 JIF gy<=20:gy=20

171 CURSOR 320,410
172 CURSOR 20,410

Note: Global gx,gy, vector size vs and focal scale fs are displayed on screen.
On start up a Pyramid is displayed.
Selection of (1), (2), (3), (4) displays the selected Object in static mode.
To select background press Keys (B)lack or (W)hite
Press <N> to toggle Node ID On/Off
Press <f> Wireframe to Solid frame <F> FILL’s Objects surfaces with colours
Press <E> enlarge or <R> reduce to change size of Object.
Press <D> decrease or < | > increase to change Focal scale (Perspective)
For Global positions use the < 4= =» 4 &ursor keys.
Pressing <xXyYzZ> keys Loops/Spins/Rolls the Object clockwise or anticlockwise.
Pressing the <spacebar> activates the animation to Loop, Spin, Roll the Object.
Pressing the <spacebar> again returns to static mode.

Page 16

QBITS Exploring QL 3D Rotation Graphics

The Procedures to create the 3D Rotation Graphics.

177 DEFine PROCedure Obj_Auto
178 rx=rx+5:IF rx>=360:rx=0

179 ry=ry+5:IF ry>=360:ry=0

180 rz=rz+5:IF rz>=360:rz=0

181 END DEFine

183 DEFine PROCedure Obj_Ang

184 ch=3

185 IF iset=1:zink=0:yink=0:xink=0:ELSE zink=7:yink=4:xink=2

186 INK#ch,zink:LINE#ch,26,40 TO 26+19*COS(RAD(rz)),40+21*SIN(RAD(rz))
187 INK#ch,yink:LINE#ch,36,76 TO 36+21*COS(RAD(ry)),76 +5*SIN(RAD(ry))
188 INK#ch,xink:LINE#ch,60,48 TO 60+ 5*COS(RAD(rx)),48+21*SIN(RAD(rx))
189 ch=1

190 END DEFine

192 DEFine PROCedure Obj_Calc

193 cx=COS(RAD(rx)):sx=SIN(RAD(rx))

194 cy=COS(RAD(ry)):sy=SIN(RAD(ry))

195 cz=COS(RAD(rz)):sz=SIN(RAD(rz))

196 FOR np=1 TO no

197 yt=y(np):y(np)=cx*yt-sx*z(np):z(np)=sx*yt+cx*z(np)
198 xt=x(np):x(np)=cy*xt+sy*z(np):z(np)=sy*xt+cy*z(np)
199 xt=x(np):x(np)=cz*xt-sz*y(np):y(np)=sz*xt+cz*y(np)
200 vx(np)=gx+(x(np)*fs)/(z(np)+fs)

201 vy(np)=gy+(y(np)*fs)/(z(np)+fs)

202 END FOR np

203 END DEFine

205 DEFine PROCedure Obj_Draw

206 LOCal Ip,v,a,b,c,d,i:RESTORE vres:READ v

207 iset=2:0bj_Calc

208 FOR Ip=1 TO v

209 READab,cd,i

210 IF cset=1:INK bg2:FILL 0:END IF

211 IF cset=2:0bj_Cull:IF ¢1>0:GO TO 214:END IF :INK bg2:FILL 0:END IF

212 IF cset=3:0bj_Cull:IF c1>0:GO TO 214:END IF :INKi :FILL 1:END IF

213 LINE vx(a),vy(a) TO vx(b),vy(b) TO vx(c),vy(c) TO vx(d),vy(d) TO vx(a),vy(a):FILL O
214 END FOR Ip

215 Obj_Node:IF nset=2:INK bg2:FOR n=1 TO no:CURSOR vx(n),vy(n),-2,2:PRINT n
216 END DEFine

218 DEFine PROCedure Obj_Wipe

219 LOCal Ip,v,a,b,c,d,i-RESTORE vres:READ v:INK bg1

220 FOR Ip=1TO vV

221 READ a,b,c,d,iFILL 1

222 LINE vx(a),vy(a) TO vx(b),vy(b) TO vx(c),vy(c) TO vx(d),vy(d) TO vx(a),vy(a):FILL O
223 END FOR Ip

224 Obj_Node:FOR n=1 TO no:CURSOR vx(n),vy(n),-2,2:PRINT n

225 END DEFine

Page 17

QBITS Exploring QL 3D Rotation Graphics

227 DEFine PROCedure Obj_Node

228 LOCal Ip,a,b,c:RESTORE nres:READ no
229 FOR Ip=1 TO no

230 READ a,b,c:x(Ip)=a*vs:y(Ip)=b*vs:z(Ip)=c*vs
231 ENDFOR Ip

232 END DEFine

234 DEFine PROCedure Obj_Cull

235 c1=(x(b)-x(a))*(y(c)-y(a)-(x(c)-x(a))*(v(b)-y(a))
236 END DEFine

Below is the DATA file MERGE'd with the QB3D_Wire (512 or 768)
400 REMark QB3D_Data03 (Pyramid Cube Hexagon Shuttle)

402 DEFine PROCedure Obj_Name
403 IF wres=512:CURSOR#0,12,4:PRINT#0," (1)Pyramid (2)Cube (3)Hexagon (4)Shuttle'
404 IF wres=768

405 CSIZE#2,0,1:INK#2,6

406 CURSOR#2,12,338:PRINT#2,

'(1)Pyramid'
407 CURSOR#2,12,358:PRINT#2,'(
'(
'

)
)Cube'
408 CURSOR#2,12,378:PRINT#2,'(3)
409 CURSOR#2,12,398:PRINT#2,'(4)
410 CURSOR#2,12,418:PRINT#2,"
411END IF
412 END DEFine

Hexagon'

1
2
3
4)Shuttle'

Note: When DATA QB3D_Data0l file is MERGE’d with QB3D_Wire program file the wres value
is read and the relative Object names are loaded.

WARNING: nres, vres hold line number references to DATA.
(If program Lines are renumbered these references may not still apply)

414 DEFine PROCedure Obj_Init

415 REMark WARNING maintain correct nres:vrs:fres numbers
416 IF k=49:nres=426:vres=433:rx=60:ry=30:rz= 0

417 IF k=50:nres=441:vres=451:rx=30:ry=30:rz= 0

418 IF k=51:nres=460:vres=474:rx= 15:ry= 60:rz= 60

419 IF k=52:nres=487:vres=511:rx= 30:ry= 45 :rz= 15

420 REMark IF k=53:nres=600:vres=600:rx= .2:ry= .2 :rz= .2
421 RESTORE nres:READ n:DIM x(n),y(n),z(n),vx(n),vy(n)
422 RESTORE vres:READ v:DIM fr(v,5):CLS#1

423 END DEFine

Note:
New Objects DATA can be added with values entered into respective nres, vres, at Lines 432 - 440 to
introduce the new Objects DATA for Nodes & Frames.

Note:

The rx,ry,rz values are based on positioning the Object in line with designed Node points. This way the
sequence of Frames FILLs can be worked out.

Page 18

QBITS Exploring QL 3D Rotation Graphics

425 REMark Pyramid
426 DATA 5

427 DATA 0, 20,-20
428 DATA 20, 20, 20
429 DATA 20,-20, 20
430 DATA -20,-20, 20
431 DATA -20, 20, 20

433 DATAS

434 DATA1,2,3,3,2
435DATA1,3,4,14
436 DATA 14,513
437 DATA 152,15
438 DATA 5,4,3,2,bg2

488 REMark Hexagon
460 DATA 12

461 DATA 30, 0,-20
462 DATA 15, 20,-20
463 DATA -15, 20,-20
464 DATA -30, 0,-20
465 DATA -15,-20,-20
466 DATA 15,-20,-20
467 DATA 30, 0,20
468 DATA 15, 20, 20
469 DATA -15, 20, 20
470 DATA -30, 0,20
471 DATA -15,-20, 20
472 DATA 15,-20, 20
473

474 DATA 10
475DATA7,8,9,12,5
476 DATA 9,10,11,12,3
477 DATA4,5,11,10,5
478 DATA 3,4,10,9,2
479 DATA 2,3,9,8,4
480 DATA1,28,7,3
481 DATA6,1,7,12,4
482 DATA5,6,12,11,2
483 DATA6,3,2,1,5
484 DATA5,4,3,6,3

:REMark Nodes
:REMark Node 1

:REMark Frames

:REMark Nodes
:REMark Node 1

:REMark Node 6
:REMark Node 7

:REMark node 12

:REMark Frames
:REMark rear frames

:REMark side frames

:REMark front frames

440 REMark Cube

441 DATA 8

442 DATA -20, 20 ,-20
443 DATA -20,-20, -20
444 DATA 20,-20, -20
445 DATA 20, 20,-20
446 DATA -20, 20, 20
447 DATA -20,-20, 20
448 DATA 20,-20, 20
449 DATA 20, 20, 20
450

451 DATA 6

452 DATA 8,7,6,5,bg2
453 DATA 2,6,7,3,2
454 DATA4,3,7,8,4
455 DATA5,1,4,8,3
482 DATA5,6,2,1,5
484 DATA 1,2,3,4,b92

:REMark Nodes
:REMark Node 1

:REMark Node 4
:REMark Node 5

:REMark Node 8

:REMark Frames
:REMark back Frame

:REMark front Frame

Page 19

QBITS Exploring QL 3D Rotation Graphics

486 REMark Space Shuttle

487 DATA 22 :REMark Nodes
488 DATA -40, 0,20 :REMark Node 1
489 DATA -20,-20, 20 :REMark Node 2

490 DATA -20, 0, 30
491 DATA -20, 20, 20
492 DATA -20, 20,-20
493 DATA -20, 0,-30

494 DATA -20,-20,-20 :REMark Node 7
495 DATA -40, 0,-20 :REMark Node 8
496 DATA 40,-20, 20 :REMark Node 9

497 DATA 40, 0,30
498 DATA 40, 20, 20
499 DATA 40, 20,-20
500 DATA 40, 0,-30
501 DATA 40,-20,-20 :REMark Node 14
502 DATA -24, 14,16 :REMark Node 15
503 DATA -30, 8,14
504 DATA -30, 8,-14
505 DATA -24,14,-16 :REMark Node 18
506 DATA 40,-16, 16 :REMark Node 19
507 DATA 40, 16, 16
508 DATA 40, 16,-16

509 DATA 40,-16,-16 :REMark Node 22
511 DATA 16 :REMark Frames
512 DATA 9,10,13,14,243 :REMark rear Frames

513 DATA 10,11,12,13,240

514 DATA 19,20,21,22,1911 :REMark Rear Door
515 DATA 2,9,14,7,243 :REMark Side Frames
516 DATA 6,7,14,13,243

517 DATA 5,6 ,13,12,240

518 DATA 5,12,11,4,,240

519 DATA 4,11,10,3,240

520 DATA 3,10,9 2,243

521 DATA 3,2,1,3,243 :REMark Front Frames
522 DATA 1,2,7,8,243

523 DATA 7,6,8,7,243

524 DATA 8,6,5,8,240

525 DATA 4,1,8,5,240

526 DATA 1,4,3,1,240

527 DATA 15,16,17,18,0 :REMark Pilot Window

Page 20

= SMSQmulator e ——— — e e — SRR

File Config 7

Exploring QL 3D Rotation Graphics

rx1€0 ry1130 G140 guiléd usi30 (1200

I SMSQmulator

Exploring QL 3D Rotation Graephics

rxi30 ryr30 rz:0 %1 yil6d Usi30 F:800

9 SMSQmulator

File Config ?

Exploring QL 3D Rotation Graphics

gx1140 gurléd

™4 SMSQmutator

File Config ?

ination Exploring QL 3D Rotation Graph

HL3 0}

ANGLE

X130 ryidS Pz gx1140 guil6d vs130 (51800

