
 
 
 
 
 

Introduction to  
Pointer Environment  

&  
Menu Extensions  

 
 

Joachim & Nathan Van der Auwera  
PROGS  

PROfessional & Graphical Software © 1993  
 
 

February 21, 1993 
  



Contents  
 
 
 
1 Introduction  

1.1 Motivation  
1.2 Loading  
1.3 Concepts  

 
2 Pointer Environment  

2.1 Pointer Interface  
2.2 Window MANager  

2.2.1 General  
2.2.2 Standard keys  

2.3 Hotkey System II  
2.4 Config  

 
3 Menu Extensions  

3.1 File Select  
3.2 Item Select  
3.3 Read String  
3.4 List select  
3.5 Report Error  
3.6 View file  
3.7 Button  

 
This documentation is copyrighted with all rights reserved. No part of this documentation 
may be copied, reproduced or stored on any media except for personal use.  
 

The ptr_gen. wman, hot_rext, config files are copyrighted by Qjump.  
The menu_rext file is copyrighted by Jochen Merz.  

 
Though much care was taken in the production of this manual, in no circumstances will 
PROGS, PROfessional & Graphical Software, be liable for any direct, indirect or 
consequential damage or loss arising out of the use or inability to use this software and its 
documentation.  
 
  



Chapter 1  
 
Introduction  
 
1.1 Motivation  
 
We have written this manual as a seperate part because there are people who have already 
used programs which run under the Pointer Environment and Menu Extensions. These 
people don’t have to read this manual as they will probably know it already.  
 
The Pointer Environment and Menu Extensions are the way ahead for the QL. Most of the 
better new software for the QL uses it. or at least is 100% compatible with it. The Pointer 
Environment has the advantage of offering true multitasking and gives you the possibility to 
write pointer driven software, so you can use a mouse if you want to, with easy menus which 
can be accessed by a key or with the pointer. Using the Pointer Environment in a program 
interface has the advantage of being user-friendly. You can easily get used to it. and once 
you know the Pointer Environment, you know how to operate any program which us it even 
before you open the package.  
 
The Menu Extensions are actually just an extension to the Pointer Environment. to give 
standard windows to some common menus. The most important one is definitely File Select, 
which makes sure that you can select a file to load or merge with a directory, ao that you 
don’t have to remember any filenames.  
 
1.2 Loading  
 
The Pointer Environment and Menu Extensions are a set of resident extensions. This means 
that these routines should be loaded at start-up (power on or after a reset), and that they 
should remain in memory until the power is switched off or until the next reset. This also 
means that these extensions should be loaded into RESPR area. You can load the Pointer 
Environment and Menu Extensions by including the next lines somewhere at the start of your 
boot file.  
 
base=RESPR(14534) : LBYTES flp1_ptr_gen,base   : CALL base  

haae=RESPR(10360) : LBYTES flp1_wman,base      : CALL base  

base=RESPR(11684) : LBYTES flpl_hot_rext,hase  : CALL base  

base=RESPR(22432) : LBYTES flpl_menu_rext,base : CALL base   

HOT_GO 

 

Please note that the lengths of the files may be different, this depends on which version you 
use. If you have Toolkit II you can also use these lines.  
 
LRESPR flpl_ptr_gen   : REMark load the Pointer Interface  

LRESPR flpl_wman      : REMark load the Window MANager  

LRESPR flpl_hot_rext  : REMark load Hotkey System II  

LRESPR flp1_menu_rext : REMark load Menu Extensions  

HOT_GO  

 

This is actually easier as you don’t have to worry about file lengths.  
 
The HOT_GO command should be included to make sure that you don’t loose the last line 
restore provided by toolkit 2 (alt_enter).  



 
Please note that some of the files have to be loaded in a distinct order. You have to load 
wman after ptr_gen, and you have to load menu_rext after hot_rext. It is also possible that 
some other resident extensions have to be loaded before all these, in particular extension 
which change the screen driver like Lightning or SpeedScreen.  
 
1.3 Concepts  

 
window    A window is a part of the screen. It can usually be recognised because there is a 
border around it. A job (=a running program) can have many windows in it, but all these 
windows must lie inside the outline. In most Pointer Environment programs the outline can 

be recognised by the shadow around it.  
 
pointer    Most Pointer Environment programs have a pointer. The pointer is the thing which 
moves when you move your mouse. If you don’t have a mouse, it usually is the thing which 
moves when you press the cursor keys, but not always. The pointer may have the same 
shape and behaviour as the cursor, but a cursor can’t be moved with a mouse. the pointer 
has the general advantage that it can have any desired shape and size. it is also possible to 
change the chape over time, thus creating something that. looks like a cursor, or a walking 
person or anything you want.  
 
Most application programs don’t allow the user to set the shape of the pointer, but they often 
change it themselves to show you what kind of operations the pointer can be used for at a 
given moment.  
 
item    An item is a part of the window. It usually contains some text or a small drawing. An 
item can be recognised because a border appears around it when the pointer is on it. This 
border is removed when the pointer is moved to another part of the screen.  
 
Items can have three distinct statusses.  
 
available  An item is available when it can be indicated by a hit or do, but isn’t yet. Such 

items can be recognised because they usually fit into the general look of the 
window.  
 

selected An item can also be selected, which means that the accompanying action will 
be taken later or is going on. Selected items can be recognised because they 
are highlighted in some way.  

 
unavailable The last possible status is that an item can’t be selected. This can be because 

a certain action can’t be executed when the program is in a certain state of 
operation, or because the action isn’t included in the program yet or similar. 
Unavailable items can be recognised because they usually aren’t 100% clear.  

 
hit    Two of the most important types of input to a Pointer Environment program are a hit 
and a do. They are both ways to indicate items in a window. A hit is cause by pressing 
<SPACE> or the left mousekey. A hit changes the status of an item from available to 
selected or vice versa. Some items are immediatly invoked when hit (e.g. a sub-menu), but 
this depends on the nature of the item.  
 
do    A do is quite similar to a hit. except that it always changes the status of the indicated 
item to selected. Usually1 a do also invokes the item. This usually makes a do equivalent to 
a hit on the item and a hit on a “DO” item in the window2.  
 
You can also invoke a do when you press <ENTER> or the right mousekey when the pointer 



is not on any item.  
 
underline    Most items in a Pointer Environment program can also be selected by another 

keypress than a hit or do. and this has the advantage that the pointer doesn’t have to be on 
the item. These keys can usually be recognised because they are visualised with a little line 
under the letter in the command. For some items this is impossible. Those items often have 
an indication of the key which has to be pressed just in front or above them. This is mainly 
the case for items which can be calh’d by pressing the function keys. This method of 
selection is equal to a hit.  
 

 
1 not all items support this, it depends on the programmer(s), in fact some items even treat a 
“do” exactly the same as a hit  
 
2 in some cases there is no “DO” item, but only an “Esc” or “OK” item.  In these cases a do 
usually invokes the “ESC” reps. “OK” item.  
 

 

  



Chapter 2  
 
Pointer Environment  
 
 
2.1 Pointer Interface  
 
This is the part of the Pointer Environment that makes sure that multitasking works as it 
should, making sure that a window is completely visible when printing or drawing in it. This 
part also makn sure that the pointer actually exists.  
 
The pointer interface is contained in the ptr_gen file.  
 
It is the Pointer Interface that controls the proper handling of jobs (programs) and their 
windows. There are several ways to switch jobs. The first - and traditional - method is by 
pressing <CONTROL-C>, and thus running through all available jobs. The other method -  
which only works if the program which is currently using the screen doesn’t cover the entire 
area - is by moving the pointer to a program which is partly visible. This program can then be 
selected by a hit or do. If you select with a do then a wake is also executed (if it exists. see 
later). If the program you want to switch to is not partly visible, then you will have to use 
<CONTROL-C> or a special program (e.g. Pick in QPAC II).  
 
2.2 Window MANager  
 
The Window Manager is the most visible part of the Pointer Environment. This is what allows 
programmers to make their programs to look and feel like any other Window Manager 
program. This common look and feel is even stronger because most Pointer Environment 
programs also use the same colours for the various parts of the menus and the Menu 
Extensions.  
 
2.2.1 General  
 
Most menus are built from items and information objects. Information objects are there just 
to give the user some extra guidelines on how to use the program or some extra information 
like the position on a page, the name of the file which is edited or similar.  
 
There are also (a lot of) items. Some stand on their own (loose items) and some may be 
grouped (in an application window). When items are grouped, it is possible that there are too 
many items to fit in the part of the window which is reserved for them. In that case the 
application window will become serollable or pannable (or both). There wili appear some 
arrows at the border of the application window. When you hit one of these arrow items, the 
window will be panned or scrolled by one item. If you “do” on such an item, the window will 
be panned or scrolled by as many items as fit in the window (minus one).  
 
It is also possible that there is a pan or scroll bar apart from these arrows. Such a bar tries to 
indicate what part. of all the items is visible in the application window. By hitting somewhere 
in the bar, you can indicate which part should be made visible.  
 
2.2.2 Standard keys & items  
 
One of the main reasons why programs look and feel the same is because so much is done 
in the same way. For this, many standard operations have a common item.  
 



move    This item is use to move the entire window to another place on the 
screen.  
The pointer will then get the same shape as the move item. You can now move 
the pointer and press <SPACE>, <ENTER> or any of the mousekeys.  The 
window will then get the same relative movement as you gave the pointer. This 
command can be cancelled by pressing <ESC>.  

 
Move can also be executed by pressing <CONTROL-F4>.  
 

size    This item can be used to change the size of the window. Depending on 
the program this item can be handled in two ways. ‘[he window can hr resized 
immediately. This usually happens when the program only has a couple of 
distinct sizes it can handle. In the other case the window usually has a variable 

size Then the pointer will get the shape of the item and the relative movement of the pointer 
indicates the change of size for the window. Please note that the bottom-right corner of the 
window remains in place. So moving the pointer to the left or top will increase the size of the 
window. Moving the pointer to the right or to the bottom will decrease the size of the window.  
 
Size can also be executed by pressing <C0NTROL-F3>.  

 
sleep    This item can be use to make your job sleep. This means that your 
program will change appearance, becoming much smaller. This has two 
advantages: the job will use less memory, and there will be more space on your 

desktop (screen). The new appearance is called a button. it is a small menu which only 
contains the program name. If you hit on the item then nothing will happen (or if you don’t 
have QPAC II, you will probably be able to move the button).  
 
When you do on the item, then the program should return to the same status as before you 
put the program to sleep.  
 
Sleep can also be executed by pressing <CONTROL-F1>.  
 

wake    This item, which is not available in many programs, give you the 
option to of giving the program the option to refresh the screen. For instance, 
the directory will be re-read when you are in a window which shows a 
directory. Wake can also be executed by pressing <CONTROL-F2>.’  
 

 
 
 
2.3. HOTKEY SYSTEM II 
 
2.3 Hotkey System II  

 
This part of the Pointer Environment implements the THING system. it is not important to 
know much about this unless you are an expert user. All you have to know is that it allows 
you to load general extension routines so that they can be accessed by any program. This is 
used for (amongst others) the Menu Extensions, the DATAdesign engine, some device 
drivers in the SMS2 system,  
 
Hotkey System II also replaces the <ALT-ENTER> and altkey commands in toolkit 2 and 
adds some new ones. We will not give more details about all these options, as they are 
mostly used by people who already know the Pointer Environment quite well. 



 
2.4 Config  
 
This is a utility program, which is often used in combination with Pointer Environment 
programs to allow you to set some defaults in the program. This program can be called with 
a line like  
 

EXEC flp1_Config  

 
The program is quite straightforward to use. It will first prompt for the name of the program 
you wish to configure. it will then ask you what you want to configure and the new values. 
These new values can usually be set by typing the new value, or by cycling through all the 
values with any key and confirming with <ENTER>. The program will clearly tell you what to 
do and you just have to follow the given guidelines. 
  



Chapter 3  
 

Menu Extensions  
 
This part of this documentation is mainly written by Jochen Merz as a user guide to the 
Menu Extensions.  
 
3.1 File Select  
 
The FILE SELECT window is always shown when the user is required to enter or select a 
filename. Here you can enter the filename either directly or edit a suggested one by 
selecting the menu option directly beneath the request. 
 
Beneath this are two menu options with which you can recall the contents of the HOTKEY 
buffer and all previous contents. Just select the menu option and the contents will he written 
to the “suggested” area- Confirm with OK and the input will be accepted by the system. You 
can also edit the name, of course. The rest of the window concerns the current drive.  
 
Depending on the size of the window, one or two sub—windows are shown - If you only see 
one sub-window this will contain the filenames and sub-directories. If you see two windows, 
the right hand (larger) on will only show the filenames, the smaller one on the left only the 
subdirectories. In these windows all the files are sorted alphabetically. The files will be taken 
from the current drive and must all have the correct ending (if any). The endings for sub-
directories are ignored, because subdirectories don’t really have endings Now you can edit 
the drive and/or the ending.  
 
If you press <ENTER> at the directory menu option, a further window is overlaid, from which 
you can select pre-defined devices and sub-directories. If you just select a directory, the list 
of files will be updated. You can also “update” it with a wake.  
 
If you press <ENTER> at the endings menu option, this will be deleted if it wsan’t already 
empty. This is easier and faster than having to select it and then deleting the four characters, 
If it was already empty, then a window overlay will show some suggested endings.  

 
Above the current directory is a list of available devices, e.g. MDV or FLP. There are also 
drive numbers from 1 to 4 listed. To select RAM1, press <R> and 1, and the directory 
window displays RAM1_ 
 
Behind the directory name you will see an arrow “←“. By selecting this option you can 
retrace a step back along the subdirectory tree without having to edit anything. So if you’re in 
directory fl1_pau_texts and select this once, then you get to flp1_paul_. The next time you 
select it, you get flp1_. If the current drive has true subdirectories (e.g. Miracle’s Harddisk or 
the QL Emulator drivers) then you’ll find the subdirectories of the file names marked with a 
“→“. As already mentioned. subdirectories are always listed, the endings don’t have to 
correspond. If you select such a subdirectory, then you’ll get in it”, i.e. the name will be taken 
over for the direclory and the file list read in again.  
 
But to get, back to the list of files: you can select any file you like. <SPACE> accepts the 
name as “suggested”. <ENTER> takes the name and carries out an OK automatically. If the 
window is too small to show all the suitable files, the normal scroll arrows will appear in order 
to scroll the next batch of names up the screen. You can also select files or directories by 
pressing the character which is in front of the name.  
 
At the right you will see a scrolling bar. Move to this area, press <SPACE> and the area will 



be shown relative to the total area. Press <ENTER> and the window will split, enabling you 
to control the two parts indepently from each other. Move to the split, and press <ENTER> to 
join the window together again.  
 
You can also preselect the eight, different subdirectories suggestions in the Directory Select 
menu. Make the necessary changes to the menusext file with Config.  
 
If the program which calls the File Select extension has a window which is not big enough to 
show the File Select window, then the filename will be prompted with the Read String 
extension (see below).  
 
3.2 Item Select  
 
When you see a window with one to three menu option. you can make your selection by 
pressing <SPACE> or <ENTER>. You can also press the first letter of the option.  
 
3.3 Read String  
 
You are asked to enter a string or filename. Under certain circumstances you may be offered 
a suggested name. You can either press <ENTER> to accept the suggestion, edit it as usual 
using the cursor keys or just enter a new string.  
 
3.4 List select  

 
This window is in fact very similar with Item Select. The only differences are that there can 
be more than three items in the window, and that the window can be scrollable if not all 
items fit in the window.  
 
3.5 Report Error  
 
The only thing you can do here is indicate the “OK” item to show that you’ve taken notice of 
the reported error.  
 
3.6 View file  
 
This window enables you to view a tile. You can setoll one line with a “hit” in the view-
window. You can scroll a page with a “do”. Waking the window lets you start again by 
viewing the file from the beginning. Selecting WRAP causes any line, which exceeds the 
permitted width, to hr continued on the next line, preceded by a → 
.  
3.7 Button  
If a program is in Button mode, then you can wake this up by moving to the button area and 
pressing <ENTER>. If the button is not positioned inside the button frame, you can move the 
button by using <SPACE>.  
 


