by Tony Tebby and David Kartin

edited by Mich&éle Wright

A L DN RN OO WM O PO S LN =0 w3 G s GIN - TN OO

Ml A DD DD D WD DD O OWEEONNNN DD OO YOO S DWW NN MR -
PMWUAaOAQD

oo Ooo-.
]

P
oo
@ m

10.7
10.8
11.0
1.1
11.2
11.3
11.4
12.0
12.1
12.2

Contents

ABOUT THIS GUIDE .
INTRODUCTION TO QDGS .

Memory Map . e .
Calling Gdes PBULT“ES e e e e e e
Exception Processing
Start-up
MACHINE CODE PPQGRAM%T & ON THE GL .
Joks . . . e . .
SuperBASIC DPGCEULFBS Aﬁu ancf}cns
Tasks . . - s e e e a e e e s

Cperating System Exuens1ons
MEMORY ALLOCATION

Heap Mechanism . -
INPUT/QUTPUT ON THE QL .

Serial I/0 .

Fite I/79 e e e 4 e e

Screen And Ccnsoie I/O e e e e e e e e
QDO0S DEVICE DRIVERS . . . e s s e e

Device Driver Memory ALLocat10n . a

Device Driver Initialisation+« « . &

Physical Layer .
The Access Layer

DIRECTORY DEVICE DRIVERS . .
Initialisation Of A Directory Dr1ver .
Access lLayer .

Staving . .
BUILT-IN DEVICE DRIVEQS
INTERFACING TO SUPEREASIC

Memory Organisation Within The SuperBASIC Area .

The Name Table .

Name List . .« ¢ « « & ¢ & o = « & =« & = &« =

Variable Values Area .

Storage Formats . .

Code Restrictions . .

Linking In New Procedures And Funct1ons

Parameter Passing . .

Getting The Values Of ActuaL Parameters .

The Arithmetic Stsck Returned Valuss

The Channel Tabhle . e e a e e e e s
HARDWARE-RELATED PROGRAMMING e e e e e 4 e .

Memory Map « - & « ¢« v v ¢ o 40 2 & = 4 4 o=

Display Control .

Display Control Reg1ster .

Keyboard And Sound Contraol .

Serial 1/0

Real—-time Clock . . . « + « -« &« + & &+ o« &

Network . . + &« + ¢ « & & = o .6 = 2 =
Microdrives . « s

ADDING PERIPHERAL CAHDS TO THE aL
Expansion Connector . . . « = « « « & ¢ «
CPU Interface . . . e e e e e e s
Peripheral Card Address1ng e e e e v e e
Add-cn Card ROMs e e w s e e
NON-ENGLISH QLS+ « « = = « « &
Video- . « s e 4 e e
Non~-English— Language Keyboards

Page 2

19.

18.
18.
20,

CONAN D ON- 00000 w

R R S -
o b L

.15

g,

Page 3

Charagter Set

Special Alphabets P e e e e e e e
MANAGER TRAPS e e e e e e e e e e e e e
I/0 MANAGEMENT ’RAPS . e e e e e e e
1/0 TRAPS .

V?CTCRED HDUTiNES
QDS SYSTEM STANDARDS
goes KEYS .
Errar Keys e e
System Variables . . .
SuperBASIC Varisbles . .
Offsets On BASIC Channsi Depfn;taana .
Job Header And Save Area Definitions .
Memary Block Table Definitions .
Channel Definitions . . . e e
File System Definition BLocks
Screen Driver Data Block Befinition
Quesues Headsr Definiticons . .
Arithmetic Interpreter Uperatlun Codes .
IPC Link Commands
Hardware Keys
Trap Keys
List Of Vectored Huut1nes
DOING BUSINESS WITH SINCLAIR . .
How To Offer A Product To S1ncLa1r ..
Where Software Products Should Be Sent For
Review .
How Praoducts Are Rev1ewed And What Slnclalr Are
Laoking For
Contractual Options In DeaLlng Wxth S1ncla1r

Research e e e e s e e e a e
Promotion And Distr1but1on .
Summary

BIBLIOGRAPHY .

{c] 1984 Sinclair Ressarch Limited

=
o

53
54
72
75

. 165
. 128
. 128
. 128
. 1258

131

. 134
. 134
. 136
. 137
. 137
. 138
. 139
. 140
. 140
Y
. 143
. 147
. 148

. 150
. 151
. 132
. 153

. 183
. 158

Page 4

1.0 ABOUT THIS GUIDE

This guide <describes the methods which mey bs used for machine cods
programming on the QL. Its contents are alsc relevant to compiler writers who
must implement & run—time library for ecther languages. This guide describes
enly thess tschnigues which are specific te the BL. It does not contain a
general description of 58000 or €BOOB =sssmbly lenguage programming: this
information cen be obtained from s number of different sources, details of
which may be feound in the bioliocgrephy. It is, thersfore, strongly
racommendaed $hat 2 refsrence book describing BB00C assembly langusge be
sgnsuitad bsfore ettempting to understsend this guide.

The guide silsg gives details of how various peripherals such as hard disk
interfaces, add-on memory and ROM cartridges may be added on to the QL, with
many details about how the firmware for such devices should be written.

Readers may notice that there are no circuit diagrams or detailed explanatians
of the QL's internal hardware structure in this manuwal, This is because it is
not necessary to have such information in order to write scftware for the QL.
We have tried in the design of Qdos to provide you with a stable interface to
the machine through its operating system; everything vou need is there and so
long as you build your products using the interfsce provided there is no
danger that any future upgrade of the QL 'will introduce an fincompatibility
with axisting software products. We will, in short, continue to support all
of the system routines documented in this guide, but specifically reserve the
right to change the GL's hardware or firmware in any other way we think fit.
Provision of circuit diagrams and the Like would, apart from endangering the
safety of our design patterns, be giving you a route to build products that
rely on nonsupported elements in the QL's design.

The commercial section of this guide sets out the variocus options offered by
Sinclair Research for the distribution of QL Software. Its aim is to give you
an idea of the way in which we work and the likely channels through which a
potential product would pass before it is accepted for publication and offered
for sale to our customers. The section alsoc gives information on the purchase
and duplication of Microdrive cartridges. :

Finally, should you feel that anything essential is missing from this manual
we would be very -grateful 1if you would write and tell us. The address to
wirite to is:
Software Publishing Department
(s Guide)
Sinclaif Research Limited

5 Willis Road
Cambridge CB1 2AG

Page 5

2.0 INTRODYCTION TC GDCS

It is 2 single—user mutti—tasking gperating

Gdog is the BL ocpsrsting system.

system: +hat 1is, 1t providss the meens for severesl independent programs to
run concurrently in the GL, but doess not provide &ny mechanisms to pravent
those programs frsm interfaring with each other. Odos can be thought of as a
collecticon of sevsral things:

1. A set of useful routines for performing functicns such as memory
atloecation, Input/Cutput, ete..

2. A mechenism for meintaining Lists of things to bs done on interrups,
including the function cof alleocating slots of CPU time to programs
which require theam.

3. A mechanism for starting up the computer, and determining the
configuratien of anvy add-on hardware that is connected to it.

The Qdss mechanisms for start-up ars described in section 2.4, Onca start-up
has been performed, Qdcs does not "pun" in the sense that traditional
operating systems run: 1{ts pieces of code and data structures simply exist
for programs to wuse., There 1is no Qdos "main progrem" that maintains
continuous control of the machine: the SuperBASIC interpreter, which takes
the place of the command interpreter found in traditional operating systems,
is simply a program which runs on the QL and uses Qdos's facilities, albeit
with a number of special provisiens. It is possible, and indeed commonly
done, to destroy the SuperBASIC interpreter completely, and yet still use all
the facilities of the operating system.

Note that in this guide, hex numbers are preceded by a dollar sign {$) as used
in the Motorola assembly language format.

Page &

2.1 Memcry Map

This secticn describes how Gdos maintsing i¢s RAM area, In the QL, the BRAM
starts with the screen RAM at pddress 820500, and the arez availsblie toc Gdos
starts at $2B000. In an unexpanded QL, the RAM finishes at $3FFFF, whilst in
a 0L with expansion memory, the BAM may go up as far as EBFFFF. The Qdos
initialisation routine determines the amount of BAM oresent and adjusts the

position of its pointers sccordingly.

The memory map is as foilows:

SV_RAMT
I !
SV_RESPR | Resident procedure area |
l
]
SV_TRNSP Transient program area |
[
{
SV_BASIC SuperBASIC ares
Free memory area (used
up for slave blocks by
SV_FREE the filing system]
SV_HEAP Common heap area

System management tables

Base of system variables

System variables

l
!
I
[
[
|
[
[
!
l
!
f
i
!
!
I
!
t
f
|
[
| Display RAM
I

|
|
{
f
[
!
!
I
I
!
f
[
{
!
I
[
f
[

Base of RAM

2.1.1 Principles —

There is no memory management hardware in the QL. This means that all code
must execute from fixed addresses in physical memory, and that a piece of code
may not be moved aftdr it has been loaded into memory. For this reason,
memaory is wusually allocated in fixed size areas which remain in a fixed
location untit deleted. The SuperBASIC area 1is an dimportant exception to
this.

Page 7

2.1.2 Bystem Variables -

The Qdos system variables

are 2 ©slsck of memory cantsining informeiion
required by the operating sysiem

U

This block is normatly located a2t address $2BGOC, but is not fixed at this
address in principie. Applications pragrams should not rely on that fixed
sddress, but should get the addresss of the base of system variasbles by calling
the MY.INF trap (see ssction 13.0].

Some of &he system variables can usefully be monitored by eapplications
nrograms, and some of them can safely be altered. A complete tist of the
eystem veriebles, each with its size and offsst from the base of system
veriabies, is given in sectiaon 17.2.

Included in the system variables area are a set of longword pointers
indicating the locaticns of the other arsas in the memory mep.

2.1.8 5System Manzgement Tables -

Immediately above the system variables are various tables used by QGdos to
meintain the List of Jjobs and various other piesces of information, The
supervisor stack also resides in this area.

2.1.4 Common Heap -

The common heap area contains the channel definitions which are maintained by
the 1/0 sub system, together with the working storage required by the I1/0
drivers or programs., The allocation of space in this arsa 1s carried out
either by device drivers, when invoked, or directly by jobs. There are two
traps provided to allocate and release space 1in this area: MT.ALCHP and
MT.RECHP (see Section 13.0). The heap allocations of a job are automatically
released when the job is remaoved.

The common heap is an example of the use of a general heap mechanism provided
by @Gdes, which operates in the way described in the entry for MT.ALLOC in

section 13.0.

The user code needs to retain one pointer to the free space in the heap. This
is a long word and is a relative pointer to the free space in the heap. When
the heap has no free space, either because it does not exist, or because it is
full, &his pointer is zero.

2.1.5 Free Memory Area -

The free memory area is used by Qdos as a buffer memory for the Microdrives,
gr, if Qdgs is suitably extended, for other filing system devices. The area
is structured as a cotlection of slave bhlocks, that is, blocks which ars
sssociated with & physical block on a medium. When memory is allocated in
another area which would encroach on the free memory srea, Odos must remove
one or more slave blocks. Before such a removal takes plece, OGdos ensures
that a true copy of the infermation is present onh the medium.

Page B

Whilst the common heap grows upwards into the fres memory area, the aress
t grow downwards intc Jt. As there gre three areas zbove it [the

ahovs i

resident procedure area, the transient program arsz end the SuperBASIC &res],
special provisicns ar= made Sg that ali thrze can grow at the sppropriates
Times

2.1.6 SuperBABIC arsa -

The SuperBASIC interpreier owns s special area located immediately =sbove th
free memory arsa: this aresz 1is wusad for ail the interprater’s stors
requirements such =s the Supe: BAEIu program, its variables, 1its. table
I/0 channels and the interprstar's waorking storage. This area is noteworthy
in that it csn be moved by Gdos without the knowledge of the SuperBASIC
interpreter if an &area above it needs to graow, or if the SuperBASIC area
itself nesds ts shrink. Its size may also be altered. The mechanism which
makes such movement or alteration in size possible operates as follows,

=
I
=)
ge
=
OF

=]

ALl references to the SuperBASIC arss are made relative to the address
ragister A6, and the vatue of A6 on entry ta the interpreter is adjusted by
OGdos to the current base of the SuperBASIC arsa [which:.is held in the system
variable SV_BASIC], offset by the Llength of the interpreter's job header
{currently $68 bytes].

The SuperBASIC interpreter divides its working area into several portions,
details of which may be found by looking at the BY definitions in section
17.3. ALl of the pointers to these various portions are also relative to AB.

2.1.7 Transient Program Arsa -

The transient program area is the area of memory 1into which the user's
applications programs are loaded. Each job is allocated a block of memory in
the transient program area, which it keeps until it is deleted: this area is
used for the job's code, data and stack. Programs loaded in this way are not
normally re—entrant, but it is relatively straightforward to use the
mechanisms in the system to sst up a single piece of code which is shared by
several different jobs with different data areas.

There is no safe way of determining a priori where a program witl bhe Loaded,
therefore programs are normally position independent (see section 3.1 on

jobs}.

2.1.8 HResident Procedure Area -

Memory allocated in this area is unavailable to the operating system. The
system knows only two things shout the resident procedure area: how to
allocate memory in it, and how to relsase it completely. Both of these
operations can only be carried out when there are no transient programs in the
machine, due to the fact that the transient program area cannot be moved.
Normally, the allocation is done immediately after start-up, and deallocation
is never performed.

Page S

The area is normelly used to load in machine o©oode procedures and functions
written to extend the SuperBASIC language (see section 8.7], and cccasionally
for ilosding in the code of device drivers when these are not locatsd in ROM in
an sdd-on dsvice. '

dos RBoutines

o
1l

2.2 Calling

o

n
[»h

Thare 2re two cetegories of Qdos routin
vectored routines. The meschanism for
of these two categoriss.

P

¥E
i

labte tc the user: ir
ing & L

gs
roctine is differan ar

W W
r

&
' f

L

m

=3
C e

2.2.1 Traps -

Traps are catled using the 8008 TRAP #n instruction: on the QL, this has the
effect of a subroutine call to a defined location which has the side effect of
saving the status register and entering supervisor mode.

Of the sixteen trap numbers available on the B6B008, numbers § to 4 inclusive
are defined for use by Qdos, the remainder bsing free for the user to redirect
to his own routines. Roughly speaking, the traps are utilised as follows:

TRAP #0 Special trap for entering supervisor mode

TRAP #1 Manager traps — routines which perform overall control of the
BL hardware and of the operating system's resocurces

TRAP #2 Input/Output management traps {I/0 traps which allocate resourcas)
TRAP #3 Input/Output traps which do not allocate resources
TRAP #4 Special trap for the SuperBASIC interpreter.

Traps are called by setting up any required parameters in registers A0D-A3 and
D1-D3, setting up the code for the required trap in DO {usually with a MOVEQ
instruction}, then executing the TRAP instruction. Trap routines do not
affect B4 to D7 or A4 to AB. There are, however, a few defined cases which

are exceptions to this.

When the TRAP operation is complete, control is returned to the program at the
location following the TRAP instruction, with an error key in all 32 bits of
DO. This key is set to zero if the operation has been completed successfully,
and is set to a negative number for any of the system—defined errors [(see
section 17.1 for a list of the meanings of the possible error codes). The key
may also be set up as a pointer to an address which holds a GDOS error string.
In this case the key.is in the form address + $80000000 ie. with its top bit
set. The string is in the usual Qdos form of a word giving the length of the
string, followed by the characters.

Note that all traps can return the error code ERR.BP (for bad parsmeter].
Note also that the condition codes may not be set according to the error code
on return from a trap, thus a program wishing to detect an error should
execute a TST.L DO instruction immediately after the TRAP instruction.

Page 10

Details of alt the Qdos traps sre given in ssctions 13.0-15.0.

2.2.2 Vectored Routines -

In sdditicn to the routines accesssd by ifrepe, thers are ssveral utility
routinss which are avsilable to the applications program their addresses are
held in a vector table which 1s located in the ROM starting at addrass 3C0.
A vectorsed routine can be asccesssd by the following code:

MOVE.W VECTOR_ADDPRESS, An

48R (An)
where VECTOR_ADDRESS is the address aof the vec table entry, &nd An 1is a
suitable address register which is not requir ed by the particulapr routine on

entry.
There are some exceptions to this technique: for soms vectored rouiines, the

code is:

MOVE.W VECTOR_ADDRESS, An
JSR $4000(An)

The entries in section 16.0 for vectored routines which require this treatment
are suitably marked.

There are no general rules covering the handling of errors in vectored
routines. Some routines return an errer code in DO in the same way as traps,
but others use the technique of returning to one of a set of alternative
return addresses. An example is the vectored routine MD.SECTR, which returns
to the location after the call if there is a "bad medium" error detected, to
the address 2 bytes Later if there is a "bad sector header" error detected,
and to the address 4 bytes later far a carrect completian. Thus the correct
code to trap these errors waould be:

MOVE.W VECTOR_ADDRESS, An
JSR $4000(An]
BRA.S BAD_MEDIUM_ERHEOR
BRA.S BAD_SECTOR_ERRCR
*# Cods for processing a correct return starts here

BAD_MEDIUM_ERROR .
* Cods for processing a bad medium error starts here

BAD_SECTOR_ERROR
* Code for processing a bad sector error starts hers

Obvicusly, a similar mechanism can be used with any number of error returns
(including zero or one).

Page 11

Complete details of the vectored routines are given in ssct
gr

icn 18.8, including
information asbout the behaviocur of s=sch routine whsan an ror ooct

urs.,

2.2.3 Atomic Actions -

In general, syst caelis are +trested =8 &iomic while one job is in
supervisor mode ng cther job in the sysiem can tskes over ths procssssr. This
provides for rescurce table protescticn without the nsed Tor complex praocsdures
uging ssmaphores. If s jcb ﬁneds to execute soms action other thsn z single
system call into which nc other job must be altowed toc inftervens, it should
enter supervisor mode before enter1ng the code which performs this action.
Supervisor mode is entersd using TRAP #0. The stack pointer only is changad

by this trap.

A job should only use 64 bytes on the supervisor stack, and all of the space
used on this stack must be released before exiting supervisor mode. In
genaral, there should be nothing on the supervisor stack when a manager trap

is made.

Some system calls are only partially atomic, that is, when they have completed
their primary function, some other Job may gain a share of CPU time befcre
control returns to the calling Job. These partially atomic system calls must
not be made from a job in supervisor mode. ALL of the scheduler calls (ie,
TRAP #1 with D0=4, 5, 8, 9, %A, $B} fall into this category, as do all the 1/0
calls {TRAP #3), unless immediate return {timeout=0} is specified.

A piece of code in supervisor mode can be interrupted by the frame (50/60 Hz)
or- external interrupts, so care must be taken, when writing interrupt servers,
that the system's internal data structure is not modified, directly or
indirectly, by system calls. 1In practice, since interrupt servers tend anly
to be moving data into or ocut of queues, this is not a serious Llimitation.

2.3 Exception Processing

There are three categories of exception traps on the 68008: user traps, traps
for software error conditions, and traps for hardware interrupts. There is
also one special hardware trap called "bus error", which can be used to trap
bad conditions on the address bus: this +trap is not suported by the QL
hardware.

User traps 0 to 4 inclusive are treated as defined in sections 13.0 through
15.0.

User traps 5 to 15 inclusive, together with the software error traps for
“"address error", "iltegal instruction™, "divide by zero", "check array", "trap
on averflow", "privilege viclation" and "trace"” are redirectable by the user
on a per—job basis: see the entry for MT.TRAPV in section 13.0.

Traps and exception vectors which are not used by QDOS may be redirected
through a table which is set up by a particular job.

If a job has set up & table of trap vectors for itself, then that table will
automatically be used when that particular job is being executed. The vector
tabltes used by othsr jobs will not be affected. A job set up by, sven if not
owned by, a job which has set up a table of trap vectors, wiltl use the same

Page .12

table as that jeb, until it is redefined.

If the job ID is 2 negative word, then the tsble will bes set up for the
calling job.

The table is in the form of a lLong word address for each trap or exception.
They are in the following order: ’

200 addrsess error
$04 dtlegal instructicn
s0E zera divids

30C ECHK

310 TRAPV

$14 privilege vialation
$18 trace

$1C interrupt level 7
$20 trap #5

$24 trap #6

$28 trap #7

$2C trap #8

330 trap #8

$§34 trap #10

$38 trap #

$3C trap #12

$40 trap #13

$44 trap #14

$48 trap #15

$4C end of table

ALl interrupts on the QL are auto-vectared, therefore there is no treatment of
the 68008 vectored interrupt traps. Interrupts generated by the QL internally
are lLevel 2 auto-vectars: the interrupt handling mechanism includes the
facility for detecting an interrupt on the EXTINTL (external interrupt, active
low} Lline in the QL's expansion port. [See section 11.1 for details of the
interface to the relevant hardware].

It is also possible to generate a tevel 7 (non-maskable} 1interrupt: the
treatment of this can also be redirected on a per—job basis. Pressing
CTRL-ALT-7 on the keyboard generates a level 7 interrupt and alsc resets all
communications with the IPC: a suitable interrupt handler could he written to
perform a warm start on the system to allow partial recovery from a crash.

2.4 Start-up

The first thing that Qdos does when the system is reset is to execute a BAM
test. This test determines the amount of contiguous RAM present, and if there
is any RAM failure, hangs up the machine. If the screen goes white a failure
in the first memory test pass has occured which is Llikely to be a real memory
failure. If the screen goes green then a feilure in the second memory pass
has occured which indicates some problem with memory refresh cor addressing.

Gdos then initialises the system variasbles, the system management tables, and
the SuperBASIC area,

Page .13

The address $CC00 is then checked by UQdos for the characteristic longword
$4AFB000T ; if this dis found, 0Odos Llinks in the SuperBASIC proceduras
contained in the HBOM, printe cut the name of the AOM, ancd perfoerms a JSR to
its 1initialisation point [details of the corrsct format of the ROM are found
in secticn 8.0 on ROM device driversl. It is perfectly in order for the code
in this AOM to take ovesr the machine completely and never return to the
- sygtem, for sxample if another opsrating system were being booted.

Sdos then dces the ssms for the other ROMs in the expansicn sicts.

If atl of these ROMs return control to Gdos, the next action is tec try to cpen
a devige driver "BOOT": if this 1is found, its contents are loaded &3 &
SuperBASIC program and executed. If no devics driver "BOOT" has been linked

in, Qdos attempts to find a file "MDV1_BOOT" and load and execute its contents
as 2 SuperBASIC program. If bath of these attempts fail, QGdos starts up the
SuperBASIC interpreter with an empty program memary.

s

Page.14

3.0 MACHINE CODE PROGRAMMING OGN THE QL

of mschine code ere availasble to progrem the QL, each being used to

perform guite different cperations: ichs, SuperBassic prgeedurss znd

functions, tesks, snd the opesrsiing system er extensions to it. Thus there

re severael differences 1in both the form in which they are written, and ths
way in which they are trgsted by Qdos. ’

Four types

2.1 Jobs

Most applicetion programs writiten in mschine code or compiled codes will be 1in
the form of jebs. A job is an entity which has a share of machine resources:

it has a pricrity which atlows it to claim time-slots of CPU activity, and it
has a fixed-size aresz of memary where dats and code can be stored: cods

normally starts at the bottom of the area, and data at the top. This area is
lccated somewhere in ths iransignt program ares.

Note that the command interpreter is itsslf a job but with the exceptional
characteristic that its data area is expandable.

A job alse has the ahility to own I/0 ghannels or cther Jobs. There 1is no
protection between jobs under QGdos, so that channels are availahle for use by
all jobs. Ownership simply implies that when the owner of a channel or job is
deleted, the owned channel or job is deleted also {this process continues
recursively),

Jabs have three well-defined states: they are active, sharing CPU rescurces
with other jobs; suspended, for example, waiting for I/0 or another job; or
inactive, occupying memory but not capable of using CPU resources.

The priocrity of a job can be zera, in which case it is suspended, and does not
consume CPU time, It can in fact be suspended for its entire Lifetime and
never execute at all, which would be the case if it was simply used as a means
af obtaining same memory into which data could be loaded. A job at any other
priority level is active.

When a job is started, two parts of its area of memory have defined meanings:
the bottom of the code area, and the stack, which is at the top of the data
area. It is the programmer's responsibility to set up the bottom of the code
area, which should be in the following form for use by GBdos utjlities:

BRA.L JOB_START
bC.w O
DC.W $4AFB
DC.w JOB_NAME_LENGTH
) DC.w 'Name of job'
J0B_START =
* Cods begins execution here (assuming that the start address defined
* when the job was created was zero)

Page 15

On the first occasicn thet z job i3 sctivated, [AB] points to the base of the
Job area, ({AB,A4]) points to the bottom of the dsta space, and {AG,AB]) points
to the top of the job srea. There may be some information on the stack, which
witl be 1in the following form: (A7) points to the number of channels which
have heen opened for the job before it was sctivated: above this is a
sequerice of longwords holding the chennel IDs, and sbove these are a command
string which may have besn passsd tec ths job. It is the oprogrammer's
responsibility when starting & job to sst up this information: ths BuperBASIC
EXEC, EAEC_W commands set & job up without setting up the stack except fer @
T t
-

-

ward value of zesro indicating channel IDs. utitity EX produces the full
vailable i GL Toolkit. Any utilities produced by

stack formet &and a o
ibls with this Torm.

1
Sinclair are comps

=
t

{AS,A5])
' Command string

Channel ID
Channe! ID

Channgl ID

fA7) Number of Channel IDs

Data area

(A6 ,A4)

Code area

Job name

$4AFB

bC.W O

(A) BRA.L JOB_START

Note that the normal sequence in Qldos is as follows:

. reserve space for a job;

. load its cade in;)
. open its channels;

. activate it.

B >

Execution begins at an address specified when the job was created. This is
normally specified as zero, which is why the first thing in 8 job is normaily
& BRA.L instruction to the entrypcint of the code.

Since Qdos cannot give guarantess ss to where & job will be Lloaded, it is
usuel to write jobs as position—indepandent code, although it is possible to
avoid this constraint if a special relocating loader is used after the spacs
for the job has been allocated.

Page 186

The system job table holds information sbout the jobs within the systen. The
systam vearighie BV_JEBBAS rpoints to the base aof the job table, and SV_JBTOP
points to the top. The table is a seriss of longwords sach of which points o
a job contrel bilock: the contents of this srs desgribed in ssctien 17.5. The
Jjob is identified to the system by its Joh ID: this iz & lengword consisting
of a word giving its position 1in the job tabls (in the lezst significant
word), and a word of tag sliocated by the cperating system when the jcb is
created (in the most significant wordl.

The traps that may be celled relating to jobs are as follows:

MT.INF returns the current job 1D, plus miscellenegus informetion.
MT . JINF returns the status of a job '

MT.CJOR creates s job

MT,JOB returns information on a job

MT .RJOB removes an inactive job

M7T.FRJOB forces removal of a job {whether inactive or not]
M7 .FREE finds ths largest space available for a jcb
WT.TRAPY sets the trap-vector table for a job

M7 .SUSJE suspends a job

MT .RELJB releases a job

MT.ACTIV activates a job

MT.PRIOR changes the priority of a job

A job terminates itself by calling MT.FRJOB with its own job ID fer -1, which
always refers to the current jobl.

3.2 SuperBASIC Procedures And Functions

The SuperBASIC command interpreter is job number zero. It behaves Like all
other jobs in most respects, with the important exception that it owns a
special data area which is expandable, and may be moved without the knowledge
of the interpreter. This area 1is located immediately below the transient

program area.

Machine code procedures.and functions which are added to SuperBASIC appear to
the user to be identical to those which are built intos the ROM, From the
user's point of view they are routines which are executed from within Job
number zera, but which have certain constraints on the way they are coded.

The most important constraint is that A6 is used to point to the {moveable]
base of the SuperBASIC data area. The system may move the area and change the
value of A6 between instructions without the knowledge of the interpreter,
therefore AB must not be modified within the procedure or function, and its
value must not be stored or used in calculation, This constraint may be
side-stepped by entering supervisar mode, but AE must then be restored on exit
back to user mode {The processcr is in user mode when g procedure or function
is entered). The stackpointer A7 must of course be restored teo its original
vatue before exiting from the procedure.

On exit from the procedure, an error key is passed to the interpreter in DO.L:
this must be set to zerc if there was no error. The procedure or function can
then be exited using an RTS statement.

Page 17

I¥ machine code procedurss or functions are to be used eithsr recursiveity aor

ure
in recursive SuperBASIC procedurss, they must obey the usual constreints of
having no Lzcal varizbles and ne ssif-modifying code. :
Machine code procedures and functions are normally leaded into the resident
procegdure area above the transient program eres. This arses can only be
gxpanded or deleted when the trensient program aree 1is empty, which is

normatly immediately after the machine is beoted.

is the one special trap which relatss to SuperBASIC procsdures and

This trep is wused 3o maks the addressss passed to an I/0 trap
toc AS, which is nacessary when working with the SuperBASIC variables
It oniy sffscts the fcocllowing trap, and must therefore be callied before
ch trap whoss addresses are to be modified.

r
u

o B

W e~ 23 M

mm oo
e et
< 0
oo |

[

[]

< \r

ct ct

11

=
=]
r
a
]

13

Details of parametar passing, function returns end other useful informaticn
about the SuperBASIC interface are given in secticon 8.0,

3.3 Tasks

Tasks are special piesces of code invoked under interrupt, usually as part. of
the physical Llayer of a device driver. They obey special rules according to
the precise conditions under which they are called: these rules are described

in the sections on device drivers {sections B.0-8.0). The important
restriction on tasks is that they must not allocate or release machine
resources: this should only be done from within a job, or within the access

Layer of a device driver.

3.4 Operating System Extensions

Some parts of user—defined device drivers do not fit intoc any of the above
categories: they are special routines called from within a job via the Qdos
Input/Output sub-system {see section 6.0). These routines have their own
rules, and these are described in the sections on device drivers [secticons

6.0-8.0].

‘- .pa

4.0 MEMORY ALLOCATION

Memory is allocated differently in each area of the Qdos memory map.
* Memory in the resident procedure area is allocated wusing the traps
MT.ALRES and MT.RERES.

* Memory in the transient program area is allocated by the mechanisms
describad in section 13.0 for creation and deletion of jobs. The
vectored routines MM,ALLOC and MM.LNKFR may bes used within a job to
parform primitive heap allocation inside that Job's own data area,

Page .18

£

Memory in the SuperBASIC ares is allocated by veriocus mechanisms,
The traps MT.ALSAS and MT.REBAS are used by the interpreter to changs
ize of %hs snitire arss, but are net o "iEiLy used by anything
;red routine BY,CHRIX is used to allocste space on the
e interpretsr itself cleans up this space on
re or function. Space in the remaining parts of
usually allocated by the vectored routinss
the operations that reguirs the space, sg that
isible tc the user, exscept that it wusually
jon af the value of AE.

€

m
RNy r!’(

the
else. The v
arithme,au s

[2) B -l

]

0. I 3
(73]
whoob b ot m

o]

i et
=

e

.

(]
0

et (M 4D e

[
=

ry ares is not allocated or deallocasted by ths

* Memory in the fre ar b
lave block mechanisme defined in secticn 7.0 on
rs

=
user, except by th
directory device dr

* Memory in the common heap is allocated and released by the traps
MT.ALCHP and MT.RECHP. The arsa allocated in this way by a job is
released when that job is deleted. The same mechanisms can be
accessed from within device drivers via the vectored routines

MM.ALCHP and MM.RECHP.

4.1 Heap Mechanism

The mechanisms for alltocating and releasing heap space are commen to various
routines. They are as follows:

A heap is an area of memory which contains & linked list of used heap {tems,
and a Llinked List of free heap items. Each heap item is an area of memory
(which is a multiple of B bytes long), together with a pair of longwords: the
first 1is the length of the heap item, whila the second is a pointer [(relative
to itself] to the next heap item in the List. 7The use of relative pointers
ensures that heaps may be moved.

A heap is set up by Llinking an area of ram 1intoc a non—existent heap ({free
space pointer=0). A heap is expanded by linking an area of ram, preferably
but not necessarily, contiguous with the current top of the heap, 1into the

heap.

Provided the user code can remember the length of a heap item, all of the
memory in it . may be used by the code. On allocation of the heap item, the
first loeng word holds its length, and seo, if desired, this may be retained by
the user code.

The user cade requires to keep one pointer to the first free space item in the
heap. This is a long word, and is relative. When the heap has no free space,
either because it does not exist, or because it is full, this peinter is zero.

Releasing a heap item adds it to the lList of free space items within the haap,
and consolidates it with adjacent frae spaces where appropriate.

Page 19

5.0 INPUT/CUTPUT CON THE GL

recagnize qualifiers appended
direct the open operation in particular ws such &5 identifying a file name,
or selecting some hardware option. The F.cgram then uses the channel ID to
identify to the I0SS which channei it wishes to access when performing reasd or
write operations on it. It can also glose the channel, passing the channel ID
tc the IDSS. There may be several channsls gpen which usa the =sams device
driver, such &as muiltipte screen windows, or microdrive files. For this
reason, all the built—in drivers ars re—entrant, as must be the user—defined

drivers if they are to have the sams cspability.

A GL program uses I/0 by =zccsssing the Gdos The ICBSE i turn accesses the
davice driver for the approprizte dsvica The device driver is a piece of
code which can perform low-level I/C routines for & particular device: that
device may correspond to e piecs of hardwars, such a8 g sarial port, or it may
be sgme notional device scccupying a pisce of memory, such as a pipe, which s
a communication chennel batwssn Jjoos.
QL I/0 is performed through the I0SS using an I1/0 channedl. The epplicstiocns
program gpens a channel by passing 2 gdevice nems to the IOSS, which returpns a
channel ID. The I0SS and the built—in device drivers have ths sbility to
to the actusl nsme of ths deviece which can
y

The QL ROM contains drivers for several devices such as screen windows, serial
ports, pipes, microdrives, and so on. The user can add his own device drivers
for pieces of add-on hardware, ar simply for additional functions with the
existing hardware.

Note that a channel ID is not the same thing as a SuperBASIC channel number
(denated by #expression): the Llatter 1is the 1index of an entry in the
SuperBASIC channel table which includes a channel ID. See sections 17.4 and
17 .7 for details of the channel table.

5.1 Serial I/0

ALl device drivers have, at the very least, the capability to perform serial
I/0: that is, the operations of reading bytes, writing bytes, and testing for
pending input. Serial I/0 is completely byte—oriented — unlike many operating
systems there 1is no inbuilt record structure, which means that the user is
free to superpagse his own record maintenance in whatever form he wishes. 1/0
which is purely serial is completely redirectable: when different devices are
being used, the device name passed to the channel open trap is the only thing
that changes.

The 1I0SS supports one control character only, this being the pewline
character, which is ASCII 10 {$DA}. Whilst this has the disadvantage that one
cannaot directly store files of graphics commands which can be retrieved by a
simple copy, it does have the advantage that files caontaining arbitrary
sequences of bytes cannot do irretrievable damage to the system by being
copied to a device for which they were not intended. The serial driver has
the option of supporting ASCII 13 as & newline, and ASCII 26 (CTRL-Z] as an

gnd of file marker.

ALl serial I/0 calls support a time-out feature, which may be zero {return
immediately), indefinite (wait until the cperation is complete], or finite
{wait until the operation is complete, or for a set time, whichevar 1is the
sooner). This Last feature makes it very easy te write code which, for
example, puts up a menu only if the user hesitates.

Page 20

The I0SS supports the following calls for seriat I/0:

I0.0PEN cpens & channel

I0.0L0SE closes s cheannel

IG.PEND tests for pending input

ID.FBYTE fetches a single byte

IG.FLINE fetches a tins of bytes terminated by newline [ASCII 10]
I0.FETRG fstches & siring of bytes

IG.8BYTE sends 3 single byie

I0.8STRS sends 2 string of bytes

anin
e de

1))
*

The fetch sand send +traps have ssveral specisl me
conjunction with screen ar console channsls: for 2 mor
of these, see section 15.0 on Screen 1/0.

hen used 1n

g h
tailed description

For the fetch byte and fetch string traps, characters read frocm the keyboard
are not echoed 1in the assagciated window, and cursor handling is left to the
applications program.

5.2 File I/0

Qdos files appear to the applications program as arrays of byftes an a physical
device, with an associated file pointer which gives the "current position” in
a file. A file alsoc has a header, which is normally 64 bytes long containing
information about the file such as its name, length, etc. Further details
concerning the format of the file header are given in section 7.0 on Directory

Bevice Drivers.

The open call to a file system device supports several modes: otd
(exclusivel, old [shared), or new {exclusive). New (overwrite) mode has a
slot allocated in the open keys, but is not currently supported for
microdrives, In addition, a specisl open key indicates that it is desired to
open the directary of the medium for reading rather than a particular file;
the directory cannot be explicitly written, but is maintained by the device
driver when open calls and deletions are made.

(Qdos supports a system of slaving, whereby O512-byte blocks of data are
buffered in the free memory area (sese section 4.0): all unused memory being
taken for this area. The filing system may return from a write operation when
that operation has only been performed on the slave block concerned; Gdos
will later force the system to convert that slave block into a true copy of
the data on the physical device. As a result of this mechanism, add-on filing
devices normally support 512-byte Logical blocks: however this blocking
system is transparent to the applications program. A single slave block table
is shared by all the directory drivers which want to use it to improve their
performance, <

In addition to the serial I/0 operations described above, Qdos supports the
following operations for file—-system devices:

I0.FORMT formats a sectored medium

I0.DELET deletes a file

FS.CHECK checks all pending coperations on a file
FS.FLUSH flushes buffers for a file

FS.PUSAB positions the file pointer absolutsly
FS.POSRE positions the file pointer relatively

Page 21

FS.MDINF gets information about the mountsd medium
FS.HEABS sets the file header

FS.HEADR reads the file header

FS.L0AD loads a file intoc memcry

F2.BAVE saves a Tile from memory

The FS.FLUSH and F3.CHECK command sre subtly different: FE.F
all write operations are complete, whereas FE.CHECK ensurss t
read operations (including prefetches] ares complete.

LUSH ensures that
hat L write and

5.3 Screen And Canscle I1/0

The keyboard and screen devices are treated in a special way by Gdos, and havs
a Llarge number of functions in additien to those available for purely serial
I/0 devices. Two types of device are supported: scr [(for secreen), which is a
scrgen window, and con [for consolel]l, which 1is a screen window with an
asspgciated keyboard channel. The three chennsls #0, #1 and #2 which are
opened by SuperBASIC are all console channels.

5.3.1 Display Modes -

The GL has two display modes (see the Concepts manual for details). The
display mode can be set or read using the MT.DMODE trap, but as this trap
clears all screen windows, it should be used with great care. A program can
also find out whether the user selected TV or monitor at switch—-on by
inspecting the value of the system variable SV_TVMOD.

There are twe main coordinate systems used for screen 1/0: these are the
graphics gcoordinate system and the pixel coordipate system {see the Concepts
manual for details]. Note that in 258-pixel mode and for several commands in
512-pixel mode, the Least significant bit of a dimension in the x-direction is
ignaored, so that a given pixel address refers to the same Location 1in both
modes. Some traps refer to character coordinates: these are hased on the
pixel coordinate system but are scaled by the current character spacing for
the window.

5.3.2 Window Properties And Operations -

A window is an area of screen which may be in any position on the screen,
subject to the restriction that 1its x-position must be an even number. A
window may be of any size that does not run off the edge or bottom of the
screen, subject to-the same restriction. Windows may overlap, but the system
does not store or “retrieve the area of overlap, it being the user's
responsibility to ensure. that any information is not lost or garbled.

Each window will have its own particular set of characteristics: g border
width, a border colour, &8 paper colour, a strip colour, an ink colour, a
cursor position, a cursor increment, 2 flsg which says whether the cursor is
suppressed, a pair of font pointers, information about newline treatment, and
graphics information. Details of the window definition block ars given in the

section 15.0.

spaci

£ 0 {0
=1 o i I e
0

ot

(™

S0,CURS
£0.8CR0OL
8o.8CRYP
8D .8CRET
SC.PAN
S0 .PANLN
SD.PANRT
SD.CLEAR
SD.CLRTP
S0.CLRBT
SD.CLRLN
SD.CLRRT
8D.RECOL
5D.SETPA
8D,SETST
SD.SETIN
SD.FILL
SD.SETMD

Page 22

al traps Tor dealing with windows are as follows:
returns window informaticon in pixel coordinates
returns window information in character coordinates
sets the border width and calour

redefines s window

snables the cursar

suppresses the cursor

scrolls a whol2 window

scroils the top pert of a window

scroils the bottom part of g window

pans 2 whole window

pans the ling the cursor is on

pans the right—hand end of the line the cursor is an
clears a whole window

clears the top part of a window

clears the bottom part of a window

clears the line the cursar is en

clears the right-hand end of the lins the cursor is an
recolours & windaow

sets the paper colour

sets the strip colour

sets the ink colour

fills a rectangular block in a window

sets the character writing or plotting mode

5.3.3 Screen Character Output Operations —

Newline characters receive slightly different treatment when bytes

being
In

arsa
channel rather than to any other device.

sent to a screen ar console

addition to being caused by a newline character, a newline 1is &sutomatically
inserted when the cursor reaches the right—hand side of the window; when this
happens during an I0.SBYTE trap, the error code ERR.OR (for out of range) is
alsoc returned.

If the cursor is supprassed, the newline is held pending. It can be cleared

by any
events:

This feature allows.the

the cursor, or activated by any of the following

call to position

sending another byte or string;
changing the character size;
activating the cursor;
requesting the cursor position.

right—hand character squares to be used without

generating stray bladk lines.

The following additional operations apply to screen character output:

S0.FOUNT
S8D.5ETFL
S0, SETUL
SD.SETSZ

sets gr resets the character fount

sets or resets hardware flash (256-pixel mode onty)
sets or resets underlining

sats the character size and spacing

Page 23

5.3.4 Graphics Operstions -

The QL can perform line, arc or sllipse drawing on & window besis in scalsd
goordinaies It elso provides a primitive ares flosd routine. Thse traps are
as foliows:

S0.FOINT draws =z point

S0.LINE draws a line

80 .ARC draws &n ars

80 ELIPS draws an sllipse

S8D.5CALE sets ths scals

80, ECU! move the grephice cursor

SD.FLOGD set gor reset area filling

5.3.5 ©Special Properties Of Console Channels -

For the conscle device, the I0.FLINE trap behaves in a particular fashion:
the characters typed are echeoed in the console window, and the Lleft and right
cursor keys [with or without CTRL] are used to edit the line in the standard
way. In addition, the cursor is automstically emabled.

An additional trap, IO.EDLIN, is provided for console channels, which 1invokes
the Lline editor on a pre—defined string. The Line—editor may be exited by
typing ENTER, or by typing either the cursor-up or the cursor—down character.

The user can temporarily suspend screen output to a console channel by typing

the freeze screen character {CTRL-F5]. Output is resumed when any character
is typed, but the character 1is ignored for all oather purposes. If a
non—indefinite time-out has been set far the suspended operation, it may
return non—complete if the screen is frozen past the time-out period.

5.3.6 GSpecial Keyboard Functions —

Several console channels may be open at the same time. If they are used by
different jobs, it may be that more than one console channel is expecting
input at a given time. When this occurs, the user may cycle round the List of
cansole channels currently expecting input by typing the cghange gqueus
character on the keyboard. The cursor in the console window te which keyboard
input is currently directed will flash if it is enabled. Any enabled cursors
in other windows will be steady.

The change queue character is normally CTRL-C (ASCII 3}. It can be changed by
modifying the system variable SV_CQCH.

The keyboard maintains s type—shead queue of seven characters 1in the 8049
processar which controls it. In addition to this, there may be more
type—shead in the queus for each conscle channel.

The keyboard auto—repeats on all ksys except the keyboard change queus
character, CTRL-Space (the SuperBASIC break] or CTRL-F5 (ths freeze scresn
character}. However, suto-repeat will not occur uniess the type—ahead queus
for the console channel to which input is currently directed is empty. The
delay before auto—repetition begins is held in the system variable SV_ARDEL,
and. the intervel between repetitions is held in SV_ARFRQ {both in multiples of
1/50th or 1/60th of & sascond}. These can be altered by a program.

When CAPSLOUCK is pressed, ths system will

Page 24

Jump toc & user-supplied routine

whose absolute address is held in the system verisble SV_CBUB if the value of
this is non—zero, This routines should restore all registers fo their initial
stats before returning.

5.3.7 Extendsd Operstions —

A spscial traep S8D.=X70P is provided to ailow & program to invokes &
user-supplied routine using the same senvironment that 18 pessed to the
routines in the screen driver. 8ee ths description in sscticn 15.0 (I/0
Trsps) for a more deteiied discussion of this trap.

Page 25

6.0 0O0CE DEVICE DRIVERS

A user—supplied Qdos tdevice driver iz a coilection of routines which allow zan
spplications program to perform 1088 functions on @ user—supplied device in
the sams way a5 such functions are performed on the dsvices buiit into ths
system. As these routines sre linksd into the system's lists in front of the
corresponding system routines, they mev be used toc replace the system
routines. At the very least, the device driver contains & set of routines for
opening & channal, closing a c¢hannel, and performing serial I/0C on thas
channel: these routines are calied vie the I0SS as part of the job that is
re tas

performing the I/0. The driver may also inciude ons cr mo
routines performed asynchrongusly with the calling J
interrupt.

Such tasks, which are known as the physical Llayer of the device driver,
normally communicate with the rest of the device driver, which is known as the
access layer, using asynchronous queves. These gqueues are usually polled by
the task st rsgular intervals, either on every cccasion the scheduler is
entered, or on every 50/60 Hz polling interrupt.

Brivers for file system devices use a slightly different, and more gensral,
mechanism: this is described in section 7.D.

Both drivers and tasks are linked in to Lists provided by the operating
system. The following traps are used %o add and remove items from those

lists:

MT . LXINT links in an external interrupt service task

MT.LPOLL lirks in a 50/50 Hz polling service task

MT . LLSCHD links in a scheduler loop task

MT.LIOD links in a device driver to the I/0 system

MT.LDD Links in a directory device driver to the file system

MT .RXINT, MT.RPOLL, MT.RSCHD, MT.RIOD and MT.RDD remove these Links.

The QL provides several utility routines which are useful for various actions
commonly performed in device drivers, such as decoding a device name,
performing qusue operations, etc.

6.1 Device Driver Memory Allocation

Device drivers allocate memory in two areas: the device driver definition
block and the channel definition block. The device driver definition block
belongs to the driver itself, and is allocated by the code which sets up the
driver when it is initialised and Llinked into the various Lists. The channel
definition block belongs to each I/0 channel, and is allocated by the driver
itself when a channel is opened. Various parts of the channel definition
bilock are thereafter used by the I0SS for its own purposes.

In theory, the access layer can allocate space on the heap st other times: in
practice this 1is not wusually required. The whole system can be made
re-entrant to allow several channels to be open with the same device driver
and the same device driver definition block, but with different channel

definition blocks,

Page 26

definition

Note that the system will certainly crash if the asrea of s char L
hannel is clossed,

bicck is deallocated and used for something else before the ¢
or if the aree of a device driver definition block is deallogated and used for
something else before the device driver is removed from the system's Lists,

g
nn
ik

Hit
an

for sxample 1f the dsvice driver definition biosk is in =2 fransient program
which 1is force—-removed. This possibility can ke obvisted by allocating the
block in the commen heap with & job number of zero, or by aliccs ting it in the

resident procedure area.

must be done for them by the

Tesks must not allocate or relsass memery: this
atisation cods.

access tayesr, cor by the devics driver initia

6.2 Device Driver Initialisation

The caodes to initialise a device driver must first allocate the space for the
device driver definition block, wusually by allocating some space in the
resident procedure area, although any of the normal allocation mechanisms may
be used.

The device driver definition block will normally have the following structure,
assuming that A3 has been made to point to it:

$00(A3} Link to next external interrupt routine
$04{A3) Address of external interrupt routine
$08({A3} Link to next pall interrupt routine
$0C[A3) Address of poll interrupt routine

$10(A3] Link to next scheduler loop routine
$14(A3) Address of scheduler Loop routine

$18{A3] Link to access layer of next device driver
$1C(A3} Address of input/cutput routine

$20(A3] Address of channel open routines

$24{A3] Address of channel close routine

$28{A3} Any further workspace required for the device driver

The initialisation code should fill in the addresses of the open, close and
1/0 routines, together with those of any of the routines for tasks that it
will be employing. It should alsc fill in any preset data required 1in the
remainder of the workspace.

Finally, the link routines described above should be called to 1include the
driver in the operating system's Lists.

Note that the structure of the first 24 hytes of the device driver definition
bleck is not mandatory; however it is desirable from the point of view of
consistency that it be kept the same. The comments in Llater sections =sbout
the base of the device driver definition block being passed to the driver are
only valid if the abpve structure has been used.

5.3 Physical Layer

The physical layer tasks are normally the onss which perform actual I/0 under
interrupt or polled control., They usually take data out of queues or put data
into queues, the other end of such queues being maintained by the access
Layer.

Page‘27

when the operating system cells one of the tasks in the physicat Llaver, i
passas the task a2 stendard set of valuss in scme of the registers. Thss
values are as folliows:

m

03 Number of 50/B0Hz interrupts since last scheduler call
{scheduler Lloop only]

A3 Pointer to base of device driver definition bilock
A8 Pointar toc system varizbles
A7 Suparvisor stack — routines may use up to B4 bytes

6.3.7 External Interrupt Tasks -

An external interrupt task must check its own hardware to determine whether
the interrupt was for itself or for some other driver. It may also need to
clear the source of the interrupt at that point. If the interrupt was not far
itself, it should rsturn.

6§.3.2 Polling Interrupt Tasks —

Polling interrupt tasks should gnly be used when critical fiming operations
are reguired. In common with the external interrupt tasks, they can interrupt
atomic operations in the rest of the system, such as access layer calls to the
same driver, so they should be used with great care.

6.3.3 Scheduler Loop Tasks -

Calls from the scheduler loop do not interrupt atomic tasks. This means that
operations such as allocating or releasing memory can be performed safely.
Note that it is gquite common for the same routine to be included both 1in the
scheduler loop and in the external interrupt List.

Scheduler Locp tasks are called at around 50/60Hz when the machine is busy,
and mare frequently if the machineg is idle.

ALl physical layer calls return with RTS. DO to D7 and A0 to AB inclusive may
be smashed. '

8.4 The Access Layer

The access layer consists of three routines: the channel open, the channel
close, and the IAput/Cutput - routine. These routines are called for the
appropriate driver by the I0SS in response to a user's trap instruction. In
the case of the channel open, the routine is called in turn for each device
driver in the machine until & driver's open routine returns correctly to
indicate that it has recognisad the device name. Due to this mechanism, an
incorrect open routine may crash the whole system when an cpen to any device
is attempted, whereas the other routines are only invoked in response to the
particular device being used.

For zll access layer calls, the values of A3, A8 and A7 sres the ssme as faor
the physical layer. The other registers have diffsrent meanings, 8s described

P

1
L

m

telow in the sscticns for the individuzl types of cC

ey
[¥8]

ALl access layer calls peturn using

6.4.1 The Channzl Open Rocutins -
When the channei cpen routine is zalled via the IS5, the following ragistars
are set in sddition to A3, AE and A7 which are ss described sbove:

Al address of the device name
D3 access code as defined in the ID.GPEN trap

The open routine should perform the feollowing operations:

First, deccde the name; the utility I0.NAME, which is described in section
16.0, will normalily be used for this purpose. Return with EBR.NF in DG if the
name was not recognised by this driver, or with ERR.BN 1if the nesme was
recognised, but some of the additional informstion was incorrect in value or

format.

Then, if the davice cannot be shared, check whether the device is in use and
prevent another channel from being opened to it. If the device is in use,
return ERR.IU.

Finally, allocate some space for the channel definition block. Any buffers or
working area required for each channel are normally allocated in the common
heap. Return with ERR.OM if there was not encugh memory to do this.

On return from the aopen routine, the following should be set:

AQ address of channel definition block
A7 stackpointer returned to its value at entry
Do errar return code (zero for a successful open)

The remaining registers may be smashed.

6.4.2 The Channel Close Routine —

When this routine is entered, in addition to the usual values of A3, AB and
A7, AQ points to the base of the channel definition block.

The function of the-close routine is simply to release the memory taken up by
the channel definition block and tao ensure that everything in the device
driver definition block dis tidy.

Under some circumstances, it may not be possible to close the channel
immediately because there are bytes waiting to be transmitted by the physical
layer. In this case, the physical Llayer must contain s scheduler Lloop task,
and the close routine should set a flag for the physical layer to complete the
releass of the memory on the next invocation of that task 4in which it is
possible to do so. When this happens, it is usually necessary to build in a
special mechanism to cope with the undesirable event of a program closing a
channal to a particular device, and then re—opening it immediately only to

receive an "in use™ error becasuss the clossd channal has not yet been clsared.

The close routine should return with zero in DO, as it is zssumed that 2 close
routine cannot fzil. The other registsrs {spert from A7} may be smashed.

§.4.3 The Input/Cutput Routine ~

cellied once when an I/0 cell is made, and then, unisass
to zero, on gvery subsequent scheduler Lloop untit
ete or the time—out has expired.

the
the

In addition to the ususl values of A3, AS and A7, the following registers are
set:

DO The trep code passed to the I0SS {0 in top three bytes)

D1 Additiconal information as defined in the trap calls in section 15.0
B2 Additignal information as defined in the trap calls in section 15.0
B3 Zero on the first entry for & given trap call, —1 thereafter

AQ Base gof channel definition block

A Additional information as defined in the trap calls in section 15.0
A2 Additional information as defined in the trap calls in section 15.0

The I/0 routine should return ERR.NC {not complete) if it cannot complete the
operation immediately. If a string operation has been partially completed,
the values in D1 and A1 (nhumber of bytes transferred and buffer pointer]
shoutd be set appropriately so that the operation can continue cn the next
try. DO should be =zero on return if the operation has been completed
correctly. Registers D2 to D7 may be smashed.

Since most of the code for handling seriel I/0 1is common to =2ll device
drivers, the I/0 routine usually calls one of the utility routines I0.SERG or
I0.SERIO (which are described in section 16.0). I0.SERQ assumes that the only
function of the access layer is to move bytes in and out of a pair of queues
paointed to by fixed positions in the channel definition block, while I0.SERIQ
assumes that the operations required of it can all be made up aut of three
primitive routines for sending one byte, fetching one byte, and checking for
pending imput, such routines being supplied by the writer of the device

driver.

Note that channels are assumed to be bidirectional; it is the responsibility
of the I/0 routine to trap an operation in a direction that is not allowed.

Note also that output operations which appear to the user as complete have
merely completed the access layer call correctly: there being no general way
in which the user can ascertain whether the physical layer has in fact
campleted the operation.

-

Page 30

7.0 DIRECTORY DEVICE DRIVEHS

Drivers for devices which have s dirsctory end form part of ths f?iing system
have & somewhat extended ssi cf functions., For directory device drivers,
there are three blocks in which memo y is aligcated, rather than two: thesse
are the directory driver Linkage bi the physical definiticon block and thse

ghannei definjtion block.

There ieg one directary driver linkage block for each directory driver: it is
an extended form of the device driver definition bilgck as found in a
non—directory device driver. The block contsins information sbout how to use
the driver, together with the links in the gperating sysiem's lists.

Each directory driver may control up te 8 drives {numbered 1 to 8)]. Each
drive has one physical definition block: this contains the drive number and
information about the medium

For each I/0 channel that is open, thers is an cpen channel definition block.

The file system is assumed to be composed of Bi2-byte blocks: thus a byte
within a file 1is addressed by the IDSS by a block number and a byte number
within that block. It is of course possible to have & different physical
block size, but the mapping of the IOSE structure ontoc the physical siructure

will be less convenient.

Each file is assumed to have a 64-byte header {the logical beginning of file
is set to byte 64, not byte =zero). This header should be formatted as

follows:

500 lang file length

504 byte file access key {not yet implemented — currently always zera)
305 byte file type

$06 8 bytes file type—dependent informaticn

$OE 2+36 bytes file name

$34 Llong reserved for update date (not yet implemented)

$38 long reserved for reference date {(not yet implemented]

$3C Llong reserved for backup date (not yet implemented)

The current file types allowed are: 2, which is a relocatable object file;
1, which is an executable program; and 0 which is anything else. In the case
of file type 1, the first longword of type—dependsnt 1information halds the
default size of the data space for the program.

7.1 Initialisation Of A Directory Driver

The initialisation routine should firstly allocate room for the directory
driver Linkage block, and then write into it the information about the driver
routine addresses, the length of the physical definition block required for
each drive, and the drive name. Note that for directory drivers, the decoding
of the device name is performed by the I0SS, not by the open routine in tha
davice driver as in-non—directory drivers: the function of the open routine
is to search for the file name within the given drive. The linkage biock may
be allocated 1in the resident procedure area if the driver is resident thera,
but will usually be in the common heap. The system will crash if the Linkage
block is overwritten without the driver being unlinked.

Page 31
" Wnen this has been done, the traps MT.LXINT, MT.LPOLL, MT.LSCHD and MY7.LDD can
be called te link the driver and any associsted tasks into Gdos.

The format of the directory driver linkage bleck is ss follows (zssuming that
A3 hss been made to point to it]:

$00{A3] link to next external interrupt routine
$04{A3) address of external interrupt routine

I.l'
£0B{A3] Link to next 50/80 Hz interrupt routine

$0C(AS]) address of S8/80 Hz interrupt routines
$100A31 link to next echeduler loop routine
$14(A31} addrsss of scheduler leoop routine
g18(AZ] link %to access layer of next dirsctory driver
$1C{A3] address of input/output routins
$20{A3] address of channel open routine
$24{A3) address of channel claose routine
$2B{A3) address of entry for forced slaving
$2C{A3) reserved .
$30(A3] reserved
$34(A3] address of entry to format medium
$38(A3] length of physical definition block
$3C(A3) word—length of drive name

characters of drive name {e.g. MDV)

Note that a directory driver must have at Lleast 40 bytes of BAM for the
Linkage block.

7.2 Access Layer

The access layer of a directary driver contains five routines: the channel
open/file delete routine, the c¢lose routine, the I/0 routine, the forced
slaving routine and the format routine.

For all directory device driver access layer calls (including apen), AQ points
tec the base of the c¢hannel definition block when each routine is called.
However, the format of the block is somewhat different:

The first $18B bytes are reserved for the IOSS.

$18{AG) FS_NEXT lLong Link to next file system channel

$1C(A0] FS_ACCES byte access mode (D3 on open call, -ve on delete)
$10(AG] FS_DRIVE byte drive ID

$1E{AC) FS_FIILNR word number of file an drive

$20(A0} FS_NBLOK word block number containing next byte

$22{A01 FS_NBYTE word next byte from black

$24(A0} FS_EBLOK word block number containing byte after EOF

$26(A0) FS_EBYTE word - byte after EOF

$28(A0) FS_CBLOK Llong pointer to slave block table for current slave

- block which may hold currsnt/next byte
$2C(AQ] FS_FNAME 2436 bytes file name
$58{A0) FS_SPARE 72 bytes spare
A1 points to the physical definition block, which is formatted as follows:

The first $10 bytes are reserved for the I0SS.

$10{A1] FS_DRIVR Llong pointer to access layer link for driver

o

Page 32

$14(A1) FS_DRIVN byte drive number
$16{A1] FS_MNAME 2+10 bytes medium name
$22{A1] FS_FILES byte number of files open on this medium

7.2.1 The Channel Open/File Delete Houtine —

The function of the open routine depsnds on the access mode. This may havs
been passed to thes I0SS in D3 if the open routine was cslled as a8 result of an
IG.0PEN trap, or it may be a negative number, which would be the cass if the
routine has besen entered as a result of sn IO.DELET trap.

In order to understand the open routine, it is necessary first to undarstand
the way in which Qdos handles device names. When a device name is passed to
the I0S5 as a result of an open or delete call, the IDSS Llooks for a match in
its Llists of device drivers and diresctory device drivers. The matching
mechanism for non—directory device drivers is defined within the open routins
fer that driver. The matching mechanism for directory device drivers is as
follows. The first characters of the name are checked against the drive name
in the directory driver linkage block {which is put there when the driver is
initialised}, and these are expected to be followed by a drive number between
1 and 8, fellowed by an underscore, followed usually by the filename. If a
match is found, the file system Looks to see if there is a physical definition
block for that drive already 1in existence. If there is not, a physical
definition block is created in the system's table of physical definition
blocks {the drive ID 1in the channel definition block is an index to this
tablel. Note that the file system has no knowledge of whether a drive is

actually connected, and will set up the definition block regardless.

The I0SS then checks to see if this is the second or subsequent open to a
shared file: 1if this is the case it generates the complete channel definition
block itself, setting FS_NBYTE to €40, and copies the remaining information
from the channel definition block for the first open. The directory driver's
open routine is not called. Otherwise, the I0SS calls the aepen routine,
passing it the file name in the channel definition block.

On entry to the open routine, the following registers are set:

Al base of channel definitiaon block

Al base of physical definition block
A3 base of directory driver linkage block

A6 base of system variables

The channel and physical definition blocks are all set to zero except for the
following, which are filled in by the I0SS:

FS_NEXT Link to next file system channel

FS_ACCES access mode

FS_DRIVE drive ID

FS_FNAME file name

FS_DRIVR pointer to directary driver access layer

FS_FILES number of files open on this drive (maintained by IOSS]

In the case of a device with removable media, the open routine should find out
the name of the medium and install it in FS_MNAME. It should also look at the
access mode to find out which operation is required. If the required
operation 1is delete, it should perform that operation and return, but if the

Page .33

required operation ig another sort of open, then it shoutd fill in the
gppropriate portions of the channel definition btock, nemsly FE_FILNR,
FS_EBLOK, FS _EBYTE,FS_NBLOK and FS_NBYTE. F5_C8L0K is 2 pointer to the slavs
block table which may be fiiled in as an indication to the I/0 routine that
the black it is looking for may be slaved there. The I/0 routine must check
this however, normaily by searching the siave table.

The IDSE will free the channel dsfTinition block on exit from the open routine
if¥ the action was & delete or if the open routine returns an error key in DO.

The maintenance of the dirsctory struc of the msdium is the responsibilisy
of the open and ciese routines — the I pilays no part in this. Eguaily, the
open routing 1s responsible for understanding the mesning of the access mode
and reacting accordingly.

turs
088

The open routine may smash registers D1 to D7 and AT to AS inclusive before
returning. D00 is the error %key, and the remaining registers should he

praserved.

7.2.2 The Channel Close Routine —

As far as the I0SS is concerned, this routine behaves in the same way as for a
non—directory device driver. It is of cocurse necessary for the close routine
to maintain the directory structure of the medium, sa0 1its eperation will

narmally be rather meore complicated.

The close routine for a directory device driver has two additional functions:
it must unlink the channel from the list of files open, and must decrement the
FS_FILES field in the physical definition block, which gives the number of
files open on the medium. Suitable code for performing these operations and
ending the close routine is as follows:

* get address of physical definition block into A2

MOVEG #0,D0 top three bytes must be clear
MOVE.B FS_DRIVE([AD],DO get the drive ID

LSL.B #2,D0 convert it to a8 table offset
LEA.L SV_FSDEF(AB] ,A2 get base of PDB table

MOVE.L. {A2,DD.W],A2 get address from [basetoffset)

* now decrement the file count
SuUBG.8 #1,FS_FILES{AZ)
* now unlink the file

LEA FS_NEXT(AO] ,AD get address of Link pointer...

LEA SV_FSLST{AB} ,A1 ... and pointer to start of linked
list

MOVE.W UT.UNLNK,A4 routine to unlink an item

JSR (A4l

LEA -FS.NEXT[AQ] ,AD restore AD to base of channal def

MOVE.W MM_RECHP,A4 routine to release channel def space

JMP (A4} call it, and exit from the close

The close routine must also initiate the process of tidying up any slave
blocks remaijning for that channel. It need not force the slave blocks to be
made into true copies itself, but it must be guaranteed that the copying will
happen without further intervention by the calling program.

Page 34

7.2.2 The Input/Cutput Routine -

ars to the I0SS to be identical for both direetory and
drivers, though oncg agein the routine is usually rather
normal fils systam devices. The main difference is that
the I/0 rout for a random access file system device must take inte account
the current block and position zs provided by the I0SS, since thess masy have
been updatsd by the IGES &8 & result of a file peointer positioning tran.

ne
=

7.8 Slaving

The area of memory between SV_FREE and SV_EASIC is used by the filing system
as temporary storsge for file slave blocks and for the slave bhlock table. A
slave block is & block of 512 bytes of data. The slave block table is a table
of 8 entries whose start point is held in the system varishle SV_BTBAS and
whose top is held in the system variable 8V_BTiOP; the system variable
8V_BTPNT points to the most recently allocated slave block table entry. The
address of a slave block, relative to the base of system varishles, is equal
tc B12/8 times the offset of the corresponding entry in the slave block table
from the beginning of that table.

Currently, only the first byte of esach slave block tabte entry ig used by QGdos
itself: the remaining bytes are available for use by the deiver. This byte
is divided into two four bit nibbles. The most significant nibble contains
the drive identifier (0..158), and the Lleast significant nibble is a code
indicating the status of the block. The byte is formatted as follows:

$00 unavailable to filing system

501 empty block

§x3 block is true representation of file
$x7 block is updated, awaiting write

$x8 block is awaiting read

- $xB block is awaiting verify

¥ is the drive ID for this file

For microdrives, the remaining space in each slave block table entry 1is Laid
out as follows:) .

BT_PRIOR O1 byte available for slaving algorithms
BT_SECTR 02 word physical sector number®2
BT_FILINR 04 word file number

BT_BLOCK 06 word block number within the file

It is Left to the device driver to decide what the slave blocks are used far
but it must be prepared to release a slave block if requested to do so by the
memary manager. This is done by calling the driver's forced slavirg routine
with the following parameters: -

A1 points to the base of the offending slave block
A2 points to the physical definition block
A3 points to the base of the directory driver linkage bloek

Registers DO to D3 and AD to A4 inclusive mey be smashed. Thers may not be an
error return to this routine,

Typically the sltave blocks are used to buffar data being written to a device,
the actual writing being carried out by an asynchronous task.

Page -35

Searching for an empty slave block inveolves performing a tinsar search through
the siave block table, usuaily starting from SV_BTPNT or SV_BTBAS. The ststus
of each entry in the table must be checked and only thoss blecks which zre
empty or true represasntstions should be taken. When 2 new block is alloceted
SV_BTPNT should be updated to point to the aliccated block. Allsceting slave
blocks is a form of memory aillocation and shouid conly be carried gut by sccess
layer or scheduler loop calls. '

The position in memory of & slave block which corresponds te a slave bGlock
table entry may be cslculated using the following code:

MOVE.L A4,DC A4 is pointer to silasve block teble entry
¥ form offset into sisve bleck table, gives
* gslave block no. * 8; entries are B bytss wide in table
*

SUB.L SV_BTBAS{AG],DO0

L8L.L #8,D0 multiply by B4 (B * 54 = 512}

MOVE.L DO,AS

ADD.L AB,AS add offset to system variable bass
* A5 now has base address of slave block

7.3.1 The Format Routine —

This routine is to a large extent independent of the other routines. It is
called with the drive number in D1, a pointer to the medium name in At, and a
pointer to the directory driver linkage block in A3.

It should return the error code in DO, the number of good secters 1in D1 and
the total number of sectors in D2. Registers D3 to D7 and AD to AS inclusive
may be smashed.

Page‘BS

8.0 BUILT-IN PEVICE DRIVERS

The following devices are buiit in toc the QL HOM:
CON_wxhaxXy_k Conscle 1/0,

window gres "w" by "h" pixels, top left hand corner at pixel position
Hxll, l!y",
kevboard type-zheasd buffer Llength "k" characters.
The size and position are defined in terms of pixels cn a
512x235¢ display '

map {pcsition 256x128 is the centre of the screen in both

display modes].
Pefzult CON_448x180a32x16_128

SCR_wXhaxXy Screen output
window definition is as for CON.
Default SCR_44Bx180a32x16

SERnpz R8232 serial 1/0
port "n",
"o" indicates parity: E,0,M,S for sven, odd, mark or space
parity, :
) "z" indicates protocol: R indicates raw data,
Z or © indicates that Ctri-Z is used as an EOF marker,
¢ indicates that ASCII 13 is to be exchanged with ASCII 410.
Befault SER1R no parity.
NETI_nn Serial network output
Link from node "nn"
NETU_nn- Serial network input
Link to nade "nn"
PIPE_n Job connection and synchronisation

if "n" given it is an output pipe of Length n bytes,
otherwise it is an input pipe connected to the channel ID
passed in D3.

MDVn_name Microdrive file

MDV1 refers to microdrive ™",

Within device names, no distincticn is made between upper and lower case
letters.

Page .37

9.0 INTERFACING TO SUPERBASIC

wWhen writing SuperBASIC procedures or functions in machine code, there are
several things thati en gpplications programmer may want to do: he may wish fo
look at cr modify the information held in SuperBASIC variables and arrays, hs
may wish to access or modify the SuperBASIC list of I/0 channels, ard he may
wish to reserve and use spacs on the arithmetic stack. He wiil also, of
course, wish to sccess the List of psrameters psssed to the rocutine and returen
values eithsr to theose parameiers ar in a funciicn return. In order to do
this, it is necessary to undsrstend the dats structurss used by ths
interpreter and to emulate the interpreter’s techniques for manipulating them.

9.1 Memory Urgsnisation Within The SuperBASIC Area
The SuperBASIC area contains twelve distinct areas:

the job header,

the SuperBASIC work area,
the name table,

the name list,

the variable values arsa,
the channel table,

the arithmetic stack,

the token Llist,

the Line number table,
the program file,

the return list,

the buffer.

There are also various other stacks used by the interpreter,

The job header is located at the bottom of the SuperBASIC area, and looks just
like any other job header (see section 17.5). Immediately above this is the
SuperBASIC work ares: this is an area of fixed storage used for the working
variables of the interpreter. Included in these working variables are
pointers to the other areas: the interpreter can not only shuffle these areas
argund, but may also ask Qdos to change the size of the whole SuperBASIC area.

The organisation of this area is shown in section 17.3. Throughout normal
operation of the interpreter, AG points to the base of the SuperBASIC work
area, the whole of which may move between instructions, with a corresponding
change 1in A6. ALL the pointers are, of course, relative to A5, suo that their
values need not be changed when the SuperBASIC area is moved.

The name table, the name list and the variable values area are required by the
applications programmer in order to access and/or modify SuperBASIC variables
and parameters, The-channel table is required in order to &access SuperBASIC
I/0 channels, end the arithmetic stack (usually abbreviated to RI stack] is a
convenient area in which to reserve storage, and is also where parameters are
passed. The remaining asreas are not described in this document.

Page 38

8.2 The Name Table

ALl varisbles, procedurs names, parameters and even expressions are handled
through the name tabls. This is a regular table of eight byte entries, but
the entries hold different information according to the type ef entry.

follows:

t
L]

The engries mey oe

Bytes 7-4 | Bytes 3-2 | Bytes 1-0 | Type

Vzilue bointer | Mame pointer £0001 Unget string

Value pointer | Name pointer sooge Unset floating point numbear
Value pointar | Name pointer $0003 Unset integer

$0101
s$g102
$0103
0201

String expression
Floating point expression
Integer expression

String

|
- !

i | i

| | i

[i !
Ptr te RI stack] -1 | | i
Ptr to RI stackl -1 | ; i
Ptr to RI stack! -1 | } |
Value pointer | Name pointer | | !
Value pointer | Name pointer | $0202 | Fiocating point number |
Value pointer | Name pointer | $0203 | Integer |
Value pointer | -1 | $03006 | Substring I
Valus pointer | Neme pointer | $0301 | String array |
Value pointer | Name pointer | $0302 | Floating point array |
Value pointer | Name pointer | $0303 | Integer array {
Line no in msw | Name pointer | $0400 | SuperBASIC procedure |
Line no in msw | Name pointer | $0501 | SuperBASIC string function |
Line no in msw | Name pointer | $0502 | SuperBASIC f.p. function |
Line no in msw | Name pointer | | {
Value pointer | Name pointer | I {
Value pointer | Name pointer |] !
Abs. address | Name pointer | |
Abs. address | Name pointer | I

$0503 SuperBASIC integer function
$0602 REPeat loop index

$g702 FOR loop index

$0800 | Machine code procedure

$0800 | Machine code function

S e it heun TSR — i i et s WP amiA mm Mok BOME pem e frmm e st s

Byte 0 of the name table has an additional usage during paremeter passing:
sge section 9.8,

The Name pointer is a pointer to an entry in the name List (sese the following
section). A name pointer of -1 indicates a nameless item such as the value of
an expression; any other negative pointer dndicates a peinter to anather
entry in the name table of which this entry is a copy.

The Value pointer is & pointer to an entry in the variable values area (see
section 9.4). A value pointer of —1 indicates that the value is undefined.

Since all these areas may move during execution, the pointers are offsets from
the base of each area. For the RI stack, the base is at the high address;

for the others it i3.at the bottom. -

Note that functions written in SuperBASIC are typed accarding to whether the
name ends in %,$ or neither. Functions written in machine code, in common
with procedures written in SuperBASIC cor machine code, have no type.

The entries for expressions and substrings are for use within the expression
evaluator: the applications programmer would not normally use them.

Page 39

§.3 Name List

The names in ths name lList ars stor
the characters of the name. Note t
uses of strings in Gdos in which a word ch

! as a byte character count followed by
is formet is different from 2Ll other
aracter count is used.

8.4 Varizble Values Area

This arsa is & hesap in which the values azre siorsed. The formet for each &ype
L -l
i i

of data item is given in the following sections,

8.5 Storage Formats
8.5.1 Integer Storage —

An ipteger is a 16-bit two's complement word,

8.5.2 Floating Point Storage -

A floating point number is stored as a two byte exponent followed by a four
byte mantissa.

The most significant four bits of the exponent are zerg, whilst the remaining
twelve bits are an offset from —-$800. The mantissa is two's complement and
fragtional, with bit 31 of the mantissa representing -1, and bit 30 of the
mantissa representing +1/2. There are no implicit bits in the mantissa, so
either bit 31 or bit 30 will be set for a normalized number, except in the
special case of zero.

The value of the number is thus mantissa * 2 to the power (exponent—-$800}. If
the mantissa is viewed as two's complement absclute (as opposed to
fractional), the value of the number is given by: mantissa ¥ 2 to the power
{exponent—-8$81F). The $1F corresponds to 31 decimal: the length of the
mantissa minus one.

Examples of floating point storage are as follows:

Hex Decimal
0804 50000000 10.00
0801 40000000 1 .00
D7FF 40000000 0.25
07FF 80000000 -0.50
0800 s0{Qo0aono -1 .00

0800 ocooongoo 0.00 °

Page 40

89.58.3 String Sterage -

A string is stered 2s g word character count, followsd by the chearacters of
the string. The string storage =zlways tekes & muiitiple of two bytes.
5 are a5 follows:

m

ke

[5}]

=
3
Lot |
Hi)

Hex String
Q004 41424544 "ABCDY
0003 414248xx "ABCH
oaao i

§.5.4 Array Storage -

An array descripter has a header which consists ¢f a longword offset of the
array valuas from the base of the variable value area, followed by the number
of dimensions (word), followed by a pair of words for each dimension. The
first word 1is the maximum index, the second word is the index multiplier for
this dimension. '

The storage of floating point and integer arrays is entirely regutar. A
floating point array takes 6 bytes per element, an integer array 2 bytes per

element.

A string array is stored as an array of characters; except that the =zeroth
element of the final dimension is a word containing the string length. The
final dimension defines the. maximum Length of the string. This 1is always
rounded up to the nearest even number. '

A substring is the result of internal slticing operations: this is a regular
array of characters; the base of the indexing is one rather than zero.

Examples of Floating Point Storage

Floating point variables {in hex])

0000 0046 oooo 0.0
0801 4000 0000 1.0
geoo BOOO 00GO0 -1.0
0804 5000 0000 10.0

Floating point arrays

hase,2,3,3,2,1 DIM A(3,2]
Examples of String Storage - -
(Numbers are in decimal)
String variable

4,65,66,57,68 "ABCD"
String array

base,2,3,12,10,1 DIM As(3,10]

Page #1

4:85,66,87,88,%x,X,%X,%,X,X HABCD"
848,50 ,51,52,523,54,85, 6,57,x " 234ce78g"
Drd s, X, R, %, X, X, %, X, % o
1,32,x,x,n,x X X X, %, X nit

Substring array

1,21 ASi0,1 TO 3] zs shove

¥ L

b

m

s&,

“~4

IFABC 1

PR
sO0 , 5

g

[43]

9.8 Ccde Restrictions

There is a simple set of rules for writing procedures 1in machine code for
SuperBASIC,

1. As the SuperBASIC program area is liable to move at any time while the
execution is in user mode, all references to this area must be indexed
by A6 or A7. AG and A7 must never be saved, used in arithmetic or
address calculetions, and must never be altered, except by pushing or
popping the A7 stack. In extreme circumstances it is possible to
enter supervisor mode [Trap #0) to make the following action atomic.
If this is done, AB and User stack pointer must not be saved or
manipulated before entering supervisor mode, and they must be restored
before exiting. |
2. Not more than 128 bytes must be used on the user stack.

3. DO must be returned as an error code {longl.

4, D1 to D7 and A0 to AD inclusive may be treated as volatile.

8.7 Linking In New Procedures And Functions

New SuperBASIC procedures and functions written in machine code may be Linked
into the name table using the vectored routine BP.INIT (see section 16.0).
When the procedures and functions are in a BOM in the suitable format (see
section 11.4], BP,INIT* is called automatically. If the procedures and
functions are to be stored in RAM, they should be Lloaded into the resident
proecedure area as, once added, they may not be removed except by re-booting
the machine. It is usuelly convenient to load the code for calling BP.INIT to
make the linkage into the same area, although this is npot necassary.

Page 42

8.8 Paramster Fassing

sihg & substitution mechanism,

The SBuperBASIC interpreter passss parameisrs u

which operatss as foilows The dnterpretar first evaluasies any of the
parameters that are expressions. A new entry is then created at thz top of
the namz itable for easch actust parsmester. In the case of z procedure or
function written in SuperBASIC, this is followed by a null sntry fer any
formal parametsr that 1s missing from the esctual perameter Llist, The
interpreter then swaps the new nams teble entries with the old name teabis
entries corrssponding to the actusl paramstesrs. In the case of 2 procedurs or
function written in machine code, the code is then calied with A3 pointing to
the name table entry for the first parameter in the list, and AS pointing to
the last {{A5-A31/B is the number of paramsters].

If a local statement i5 encountered, the entry in the name table is copied to
a new pasition at the top of the table, and an empty entry put in its place.

At the end of a SuperBASIC procedure or function, the parameter entries are
copied back and local varisblss are removed. The parameter entries in the
name table together with any temporary storage in the variable value table are
then removed for all procedures and functions.

Byte 0 of the name table entry for a parsmeter has an additional meaning to
that associated with a8 normal name table entry. The bottom four bits have thse
usual indication of type (O=null, 1=string etc.], but the top four bits are
used to indicate the separator that was present after the parameter in the
actual paremeter list, together with information as +to whether the actual
parameter was preceded by a hash (#).

Thus the format of byte 0 is as follows:

| type: O=null, 1=string, 2=floating point, 3=integer

type of following separator: O=none, 1=comma, 2=semi-colon,
3=backslash, 4=exclamation mark, 5=TO

1 if the parameter was prsceded by hash, otherwise O

5.8 Getting The Values Of Actual Parameters

For the purpose of using scalar {as oppased to array) parameters locally in
the same way as 'call by value' parameters in other high-level langusges, it
is expedient to use'gne of a set of four vectored routines which place the
values of actual parameters on the arithmetic stack. Each routine assumes
that all the parametars will be of the same type. It is passed the values of
A3 and A5 which point to the name table entries for the parameters; it
returns the number of parameters fetched in the Least significant word of D3,
and the values themsslves in arder on the arithmetic stack with the first
parameter at the top {lowest address] of the stack. These routines smash the
separator flags. They are as follows: CA.GTINT gets 16-bit integers, CA.GTFP
gets floating point numbers, CA.GTSTR gets strings, and CA.GTLIN gets floating
point numbars but converts them to 32-bit Long integers.

Page 43

These routines may still be used when processing paresmeters of mixed +type or
when wishing to inspect the ssparateors. To begin with, the valuss of A3 and
AE should be saved; then, for each parametar in sguccession, the ssparator
flags are inspected, snd the approgpriete routine 18 called with A3 pointing to

the parameter and AS egual to AS+8, thus gstiing one parame:er.

These routines smagh D1, D2, D&, D8, AD and A2. The error codes are returned
in DO snd the ceondition codss

A specizl techniqus is provided for use in those routimes in which it is
necescary for the user to bs able to tvype in a2 string without guotes, as is
required for SuperBASIC commands involving devices names. Firstly, the name is
inspected to see if it is a vaiid set string variabie. If it is, the string
is fetched using CA.GTSTR; if it is not, the paremetsr's name itsslf fis
fetched from the name List, and convertsd to string form by changing its ward
caunt from byte to ward, realigning the string if necessary. If & string is
to be input without quotes, it must of course folleow the rules for SuperBASIC
names, as described in the Concepts manual.

8.10 The Arithmetic Stack Returned Values

The top of the arithmetic stack is usually pointed to by A1. Space may be
aliocated on the stack by calling the vectored routine BV.CHRIX: the number
of bytes required is given in DO.L; DO to D3 are smashed by the call. Since
bath the stack within the SuperBASIC area and the SuperBASIC area itself may
move during a call, the stack pointer should be saved in BV_RIP(AB] before the
call, and restored from BV_RIP[AG) after the call has been completed. The
routine ensures that the restored value will be correct.

The vectored routines for getting paramsters reserve their own space on the
arithmetic stack.

The arithmetic stack is asutomatically tidied up both after procedures, and
after errors 1in functions. To make a good return from a function, the
returned value should be at the top (lowest address) of the stack with nothing
betow it {that is with both [AG,A1.L} and BV_RIP(AB) pointing to it] when the
routine is exited. The type of the returnad value should be in D4 (1=string,
2=floating point number, 3=integer}. Since SuperBASIC has no long integer
type, long integers must be converted to floating point before returning.

Values can alse be returned to parameters or, indeed, global variables,; by
putting the value on the arithmetic stack in the same way, pointing A3 to the
appropriate name table entry and calling the vectored routine BP.LET. RO s
an error return, and D1, D2, D3, AD, A and A2 are smashed. If the actual
parameter was an expression, no error will be given, but the value returned
wiltl be Last. The type of the returned parameter is determined by the hame
table entry, and the information on the arithmetic stack must be 1in the
corvrect form.

Note that strings must be aligned on the arithmetic stack se that ths
character count is on a word boundary. All entries on the stack must be a
multiple of two bytes long, so that a string of odd Length has one byte at the
end which contsins no information.

Page 44

9.11 The Channel Table

A channel number [#n} is an index toc an entry in thes SuperSASIC channel tasble.
This is a table of items which are each of length CH.LENCH {currently$28]
bytes. The base of the table ig at BV _CHBAS[AE), and the tap is &t

BY_CHP{A8); thus ths base of the entry for channsl #n is given by:
{ (n*CH.LENCH+BY_CHBAS{AB)] [AE}

The format of each tabte sntry is es follows:

$C0 tong the channel ID

804 fleat current grephics curscr (x]

$0A float current graphics cursor (y]

$10 fleat turtle angle (degrees)

$16 byte pen status

$20 word character position on line for PRINT and INPUT
$22 word WIDTH of page

If a channel entry is off the top of the channel table, or it the channel ID
is negative, there is no channel open to that # number.

Page 45

10.0 HARDWARE-RELATED PROGRAMMING

10.1 Memory Mzp

The §B0GB has cne megabyte of address space. Although an unexpanded QGL usss
only the bottom 2856 kbytes of this, ths ccatign for the remainder is
determined and should be achered to when design sdd—on hardware, This 1is
how it is mads up:

SFFEFF
! Add-on ROM |
$E0G0O | [Up toc 128 khytes) i
t !
! Add-on peripherals |
| (8 slots af up to I
$C0000 | 16 kbytes each] |
i f
| Add-cn RAM [
$40000 | {Up to 512 kbytes] [
! !
| On-board user RAM |
$28000 | (868 kbytes]) i
] [
| Screen RAM |
$20000 | {32 kbytes! I
: I l
| On-board 1/0 !
$10000 | (Partially decoded] !
I |
| Ptug—in ROM cartridge |
$0C00a [(16 kbytes) I
f !
| On-board ROM !
$00000 | (48 kbytes) f

The registers in the on—board I/0 area are partially decoded: the details of
this decode may vary according to different versions of the GL hardware — some
versions will recognise any address in the entire area. However, the address
map normally used is the same for all QGls:

| Address [Function | Function i
I [Hex] ! {Read) I (Write) |
[| I [
| $18023 | Microdrive data {track 2) | Display control t
| $18022 | Microdrive data (track 1) | Microdrive/RS-232-C data |
| $18021 | Interrdpt/IPC Link status | Interrupt control !
| $18020 | Micradrive/R5-232-C status | Microdrive control [
[$18003 |} Real-time clock byte 3 | IPC Link control [
[$18002 | Real-time clock byte 2 | Transmit control !
| $18001 | Real-time clock byte 1 | Real-time clock step !
| $18000 | Real-time clock byte O | Real—-time clock reset !

The display control registers are in the ZXB301 "Master chip", and the others
are in .the ZX8302 "Peripheral chip". The details of the GL hardware are
rather obscure, and it is strongly rscommanded that these registers should not
be used by applications programs, and should only be accessed via Gdos traps

FPage 48

or vectored routines.

10.2 Display Caontrol

The display fermat in memory 15 sxplained below: this {format is specific $ao
the GL and may change on future Sinclair products. It is, therefore, strongly
sdvised that screen gutput be performed using enly the standard screen driver,

together with the MY.DMODE trep.

In 5i2-pixel mode, two bits per pixal are used, and the GREEN and BLUE signals
are tied together, giving & chaice of four colours: black, white, green and
red. On a monochrome screen, this will translate as a four Level greyscale.

In 286—pixel mode, four bits per pixel are used: one bit each for Hed, Green
and Blue, and one bit for flashing. The flash bit operates as a toggle: when
set for the first time, it freszes the background coclour at the value set by
R, G and B, and starts flashing at the next bit in the Lline, when set for ths
second time, it stops flashing. Flashing is always cleared at the beginning
of 2z raster Line.

Addressing for display memory starts at the bottom of dynamic RAM and
pragresses in the aorder of the raster scan — from left to right and from top
to bottom of the picture. Fach word in display memory 1is formatted as
follows:

High byte (A0=0) Low Byte (AQ=1) Mode

07 b6 D5 D4 D3 D2 D1 DO B7 b8 D5 D4 D3 D2 D1 DO

G7 G6B G5 G4 63 G2 G1 GO H7 R6 RS R4 R3 RE R1 RO 512-pixel
G3 F3 G2 F2 G1 F1 60 FO A3 B3 R2 B2 R1 B1 RGO B0 256-pixel

B, G, B and F in the above refer to Red, Green, Blue and Flash. The numbering
is such that a binmary word appears written as it will appear on the display:
ie R0 is the value of Red for the rightmost pixel, that is the last pixel to

be shifted ocut onto the raster.

10.8 Display Control Register‘
This is a write—only register, which is at $18063 in the QL.

One of its bits is available through the GQdos MT.DMODE trap: bit 3, which is
0 for 512 pixel mode and 1 for 256 pixel mode.

The other two bits of the display contral register are not supported by Qdos,
these being bit 1 of the display control register, which can be used to blank
the display completely, and bit 7, which can be used to switch the base of
screen memery from $20000 to $2B000. Futurs versions of Qdos may allow the
system variables to he initialised at $30000 tc take adventage of this
dual-screen feature: the present version does not.

Bits 0, 2, 4, 5 and 6 of the display control register should never be set to
anything other than =zero, as they are ressrved and may have unpredictable
results in future versions of the QL hardware.

Page 47

10.4 Keybeard And Scund Control

Loudspeaker ars controlisd by the GL's second procsssor,

The kayboard and
which is =n ED48 single—chiz microcomputer: this is xnown in the QL as the
Intelligent Perigh |, Cantrollsr or IPC. The MT.IPCOM trap provides a set of

=

ral

CPU pan send to the IPC cver the serial Link that conneects
d :

commands that th
3 iscussad in grsster detail in section 13.0.

them. This trap

cessed via the conscle dgriver, the usual Functicns of
ign to ASCII arz performed, in addition to the functions

When the keyboard is =c
i
5.0. The other way of accessing the kayboard is to use

debounce enhd convars
deszcribsd in ssction 1

the M™MT7.IPCOM <rep to monitor the instantsneous state of thes keys directly:
this is the only way of detscting multiple key presses (necessary for joystick
input!, ar of detecting the state of the SHIFT, CTRL and ALT keys when na

other key has been depressed. See the SuperBASIC Keywords entry on the KEYROW
function for an example of the use of this technigue.

The same trap, with different perameters, is used for sound generatiaon.

10.5 Seriat I/0

The QL's serial I/0 should only be accessed via the serial driver, except for
setting the baud rate, which is performed by the MT.BAUD trap. The only other
function that can safely be performed by the user independently of the
operating system is the checking of the transmit handshake lines (OTR on
channel 1 and CTS on channel 2}, which can be looked at by monitoring bits 4
and 5 of the microdrive status register respectively. HNote that if the
connector is rewired to use these pins as data lines, this function ocould be
used to perform RS-232-C reception entirely in software, which would make it
possible to perform XON-XOFF handshaking or split baudrate operation.

10.8 Real-time Clock

The QL's real-time clock is a 32-bit seconds counter. The three traps
MY BCLCK, MT.SCLCK and M7.ACLCK are used to read, set and adjust the clock.
The vectored routines CN.DATE and CN.DAY are used to convert the time obtained

to a string.

10.7 Network

This should not be accessed other than by the buiit—in device driver.

-

-

10.8 Microdrives

Noermally, these should not be accessed other than by the built-in device
driver. However, it 1{is possible to write routines to access microdrive
sectors directly in order to perform such functions as fast medium—to-medium
copying or recovery of data from a damaged medium.

Page 48

Therz are four wvectored reoutines provided for this purpose: MD.,HEAD,
MD.WRITE, MD.VERIN and MD.SECTR. Use of these routines requires a detailsd
understanding of the microdrive hardwars and format, snd is prebably bayond
the scope of most users. However the following routines are alsc reguired to

perform the actign of selscting and deselscting & microdrive, In current
versions of the opersting system (“* to KS] thsy are not vectored, through
thay should be in fusurs reie~ses. Ti rautines are called STARTUP and

WIND_PWN respectively

; : Houtine to start up 2 microdrive, ; NB:BETURNS IN SUPERVISOR MODE {if
d3=1 to 8] ; ; d1 ¢1 smsshed ; dE dZ smashsd ; d3 number of microdrive 43
preserved ; a0 a0 SY_BASE ; a3 a3 pec_tctrl (=81B020) ; ; errors: H :
CR:microdrive out of range ; startup

cmp.L #1,d3 ;tegal microdrive?

blt.s jLL _drve ;jump if not

cmp #8,d3 ;legel microdrive?

bgt.s itl_drve ;jump if nat

move.L {sp)+,a3 ;a3=return address

moveq #mt.inf,d0 ;select MT.INF

trap #1 ;80=To system variables

trap #0 ;supervisor mode

move.t a3,—{sp) ;'return' {geddit?) the return address

maoveg #10h,dD ;smicrodrive mode

bsr sys_wser ;wait for HS232 to complete

or #0700h,sr ;shut out rest of world

move.l d3,d1 ;d1 is microdrive to be started

move. L #pc_tetrl,a3 ;a3=Centrol register

bsr md_selec ;start it up

moveq #0,d0 ;jno problems

rts :return ill_drve

moveq #-4,d0 ;er;ér=out of range ‘
rts ;3 Routine té wind down (all!l) microdrives :+ NB:MUST BE CALLED

! }

IN SUPERVISOR MODE ; 3 d1 d1 smashed ; d2 d2 smashed ; a0 al SV_BASE ; a3

L
a3 Instuction after call to here (}1) ; wind _dwn

moveqg #mt.inf,d0 ;select MT.INF

Page 489

trap #1 ;a0=To system varizbles

14

move. #pc_tectri ,a8 ;s83=Control register
bsr.s md_desal ;wind it down

bsr sys_rser ;re—snable RS232

move.l (spl+,s2 ;a3=return address
move #0,sr jinterrupts off

move.l ad,~[sp] ;'return’ return addr.
rts jreturn

Assgciated subroutines for startup and wind_dwn ; sys_wser
move.b d0,—-(sp] ;save cperation wait

subg.w #,sv_timolal) ;decrement timeout

blt.s set_mode ;done?

mave.w #(20000%15-82])/36,d0 ;time=18*n+42 cycles delay1
dbhra d0,delayl ;delay

bra.s wait ;repeat until timeout expires set_mode

clr.w sv_timo(a0) ;clear wait

and.b #pc.notmd,sv_tmode(e0]) ;not RS232

move.b (spl+,d0

or.b d0,sv_tmode{a0] :either mdv or net

and.b #0FFh—-pc.maskt,sv_pcint(al);disable transmit interrupt exit
move.b sv_tmodef{al) ,pc_tctrl ;set pe

rts sys_rser

bclr #pc..serb,sv_tmode(al) ;set RS23Z2 mode

or.b #pc.maskt,sv_pcint(al) ;enable transmit interrupt

bra.s exit md_dessl

maveq #pc.desel,d2 j;clock in deselect hit first

movag #7,d1 :daselect gll

Page 50

bra.s ssdes md_sslec

F

moveg Fpc.seles,dE j;clock in select Bit first

[

#1,d1 iand clock it through n times sedes clk_loop

move.h ¢g2,{s3] ;ciock high

moveg =[{18%15-40)/4,d0 ;3ime=2*n+20 cyclies
?U?fL d0,do

beir #oc..sclk,d2 jclock Low

move.h d2,l=3} ;...clocks d2.0 into first drive

‘moveq #{18%15~-40}/4,d0 ;time=2*n+20 cycles
ror.t ¢0,d0
moveg #pc.desel,d2 ;clock high — dsselect bit next

dhra d1,clk_loop

rts drive
bsr.s startup
bsr.s wind_dwn

rts

Page 51

11.0 ADDING PERIFHERAL CARDS 7O THE QL

to the expansion ceonnectar on the Left—hand
g connectars in the QL expsnsicn module: 2
ards to be connected to the GL in paratlel.
of & power supply and a card cage containing
backptane is connected %o the GL via =2

Peripheral cards may be plugge
sids ef the GL, or intc one

unit which allows ssveral add—ﬁn c
The QGL expansion module consi
a specisltiy wired backplsne.
ribbon cehle and huffer card.
There are two gensrel ipheral card for the GL: purg =add-on
memory cards, and cther

It is intended that cnly one purs sdd-on RAM card be plugged into the machine
at any one time., It is allocated the address area between $400800 and $BFFFF;
the add—on memory should be cantigucus from $40000 upwards. This allows for
an add-on memory size of up to 512 kbytes.

There is also room for an add-on ROM card of up to 128 kbytes, which is
allacated the addrsesses $EQDUC to SFFFEF.

Other peripheral cards contsin slectronics for the devices being added, a
small ROM containing the drivers for the devices being added together with a
code allowing the GL to detect that the eard is present, and a 4-bit
comparator which is used to select the card as explained helow,

Note that the convention adopted in this document for an active Low signal s
to append the Lletter "L"™ to the end of the signal name, as in DTACKL, VPAL
gtc. This takes the place of the overbar indication used in the data sheets
from most vendors.

11.1 Expansion Connector

The expansion connector allows extra peripherals to be plugged into the QL.
Details of the connections available at the connector may be found in the GL
Concepts manual.

The connector inside both the GL and the expansion module 1is a 64-way male
DIN-41812 indirect edge connector, as found on standard Eurocard modules. The
connecter an each add-on card should be the inverse version of this.

The VIN supply is in the region of +3V DC: the trough never falling below 7V.
Up to 500 mA may be drawn from this to power the card.

No add-on card should Load any pin on the edge connector by more than two
LSTTL Lloads. All add—on card data bus output drivers should he a 74L5245 cor
equivalent, in terms of drive ability, and in being tri—state.

Care should be taken with the physical length of runs off the expansion bus.

When the expansion module is connected, RESETCPUL is held low until power is
applied to the sexpansion module. Switching off the expansion module also

forces RESETCPUL Low,

Page 52

11.2 CPU Interface

The CPU dinterface is totally memory-mspped ontoc the 8E008B's bus, cont
the bus for use with the video display controiler being obtained by usi
DTACKL signat to arbitrate the bus. Memory access is entirely controlled by

bBSL, with ASL Lleft wunussd. ASL should not be used to gate any add—-on
hardwars,

An unexpanded QL doss not Llook at addr L
cards which are o be added tao the G t

digable the cirsuitry on the GL itssl{ when 2t peripheral card reccgnises
its own =address. This 1igs achieved by pu ng signai DSMCL high before DSL
goes Llow including buffering times. This is done typically by using & fast
NPN switching transistor {such =zs an MPS23EEZ] connected as an emitter foltower
with the emitter connected to DSMCL, the collector to +8V and the base fo a
logic signal. Note that the timing for this cperaticn is the most critical in
most hardware interfaces to the QL, especially when the necessary signals have

been buffered.

A18 and A1B. In peripheral
it is necessary for ssch card to

Add-on cards must supply DTACKL or VPAL as required, to notify +the CPU that
they have recognised their address.

ALL 68008 signals are available both on the expansion connector and in the
expansion module to allow expansion to include coprocessors or other

peripherals.

The following signals are outputs only: AO0O-A18, RDWL, ASL, DSL, BGL, CLKCPU,
E, RED, BLUE, GREEN, CSYNCL, VSYNCH, ROMOEH, FCO-2, RESETCPUL.

The following lines are inputs only, and should only be driven from open
collsctor outputs: DTACKL, BRL, VPAL, IPLOL, IPL1L, BERRL, EXTINTL, DBGL.

The data bus, D0O~-D7, is bidirectional.

When using the QL expansion module, the data bus huffers 1in the module are
enabled whenever A1B or A18 is high, or if the Data Bus Grab Signal (DBGL) is
asserted by any add-on card on pin 235A of the edge connector. If DBGL is to
be wused, it should be driven by an cpen cellector buffer. The DBGL signal
shauld be asserted when an external device wishes to respond to an address in
the Llowest 256K - this 1is wusually occupied by existing [unexpanded] QL
hardware. Normally this is only used %o "take over" the system ROM and
replace it with another operating system. Its effect is to enable the data
bus buffer in the QL buffer card: on the bare QL it is not connected, and the
peripheral is assumed to be able %o "pull" harder than the OL, as it will when
it is equipped with the required data bus buffer {74L5245 or equivalent].

The EXTINTL pin may be used to generate a level 2 external interrupt, which
can be Llinked to a user task {see section 6.3]. Note that the EXTINTL pin
must not be negated until the Qdos start-up mechanism is complete, or there is
a risk of the system hanging up.

Page 53

11.3 fFeripherael Card Addressing
{iccated the

Peripheral cerds {gther than pure add-on memcry cards! zre
iph card, when

eddress space betwesn $SCG000H and $OFFFFH. Esch perip
selsctad, must disable DSMCL and assert VPAL or DTACKL as re
own uss. This address space 1is split into eight slots o
sach psripheral card should normalty take gnly one bicck 3if =& full
eight peripherel cards is to be allowsd io operate concurrently,

Thers is g set of four select lings, SPC-5F3, appearing on the edge connector.
The first cerd in the QL sxpansion moduls, or & single czrd directly plugged
into the BL, receives a value of zero on these four lines. Each slet in the
expgension medule has & value one different from that in the other slots: this
means that each card is allocated 16 kbytes of address space. The card sslect
logic compares the vsalues on A17-A14 against the number coming in on the
select Lines in order to determine whether that card is selected. For the
card tc be selected it must bs the case that A14=5SP0, A15=5P1, A16=5P2 and

A17=EP3.

If there is a ROM contsining device drivers for the peripheral card, it should
sit in the bottom addresses of the 18 kbyte block. The format of the lowest
part of this ROM js specified in the next section.

11 .4 Add-on Card ROMs’

When the machine is booted, the operating system checks for plug-in ROM
drivers by looking for the characteristic longword flag $4AFBOO001 at the base
of each Location in which a ROM might be present. The beginning of a plug—in
ROM should he in the following format:

0o $4AFBO001 [flag tao indicate ROM is present)

04 pointer tg Llist of BASIC procedures and functions
06 pointer to initialisation routine

OB string identifying the ROM

The pointers are relative to the base of the ROM. If the list pointer is zero
then there will be no attempt to Llimk routines into SuperBasic.

The List of BASIC procedures and functions is in the form used by BP.INIT {see
section 16.0).

At start-up the machine will link in the additional BASIC procedures from the
ROM, then call the initialisation routine [in user mode] which must net modify
A6, and finally must restore AD (the initial window ID), and A3, the pointer
to the ROM, on exit. Up to 128 bytes may be used on the user stack.

The description should be in the form of a character count (word] followed by
the ASCII characters of the device description{s]) ending with the newline
character (ASCII 10}. It is recommended that the number of characters should
be limited to 3B, :

AlLL code for device drivers must be position independent, since the addresses
of the ROM and the devices on the card will be dependent upon the pasition at
which it has been plugged into the OL expansicn module. This allows multiple
copies of the same add-on card to be used simultaneously.

Page 54

12.0 NON-ENGLISH 4iS

from English Qbls:

There are thres arsas in which non—English Gls may diff
i communications.

the video, the keyboard, and the character sst for seri

w m
~

The version codes for non—Engiish Gls are adjusted appropristely to contain a
charactsr idsntifying the country. In ths version cods returned by MT.INF,
this character repiaces thg decimel peint; in the string returned by the
SuperBASIC VERE function, the charscter is added on et thes end, producing a

string three chsractere long for non—English Qls.

12.1 Video

This is different for countries where the television system ds NTSC, which
permits the use of fewer raster lines than PAL, 1In QlLs for such countries,

the following options are the defsuits:

For monitor operation, a 50Hz 624~line non—interlaced system is used; this is
the same system as is used on the English QL. The full 512x2568 pixel display
is available, and the defsult windows and charactar size are the same as for
the monitor made on an English QL.

For TV operation, a 60Hz 524-line non—interiaced system is used in which the
number of raster Llines available is limited to 192. In order to ease the task
of software caonversion, an alternate display font is provided which allows a
6x8 character square instead of the usual 6x10: This ensures approximately
the same number of visible rows of text on beth PAL and NTSC GLs, at the cost
of +true descenders and reduced vertical spacing. The default windows and
graphics scaling for TV operation are different from those of the English QL.

It is to be expected that a different version of any applications software [or
at Lleast different options] will be required for NTSC operation on domestic

televisions.

12.2 Non—English—-language Keyboards

The keyboard layout for most European countries will be different from the
Engltish layout. This differance should be largely transparent to applications
software, since the 'QL ASCII' codes contain all the characters necessary for
the European countiries in question, and the codes generated are independent of
the keyboard layout and hence of the actual key depressions required to
generate them,

However, there are a_few subtleties, the following being the most obvious:

1. A program which- draws pictures of keys 1in certain places will
certainly produce an incorrect drawing if the location of those keys
has changed between countries.

2. The keyrow function (or MT.IPCOM trap) refers to the physical
position of the keys, not to their logical meaning. For example, a
test on an English QL for the letter 'Q' using keyrow will turn into
a test for the Lletter 'A' on a French GL which has an AZERTY

keyboard.

3. An instruction to 'hit sny key' wiil not be strictly accursts for =&
country which employs non—spacing discriticals, where the ksypress of
an accent cheracter does ngi generate = code until the character to
be accented s pressed. The length of the typs—shead buffer in the
IPC will be epparently reduced in such cases.

12.3 OCharacter Set
The English character set 1ig availabi in all countries. However, in

(<]
non—English countries, the chesracter st {or serial communicaticns may
(optionally] be translated intc a 'local' character set, this being chosen by
the Sinclair distributor for that country as being a commenly used interface
standard. A further option allows the user t¢ specify his own translation
table, since it 1is anticipated that a number of countries will have several

standards {i.e., no standards at all].

12.4 Special Alphabets

Languages with non—Roman alphabets, such as Hebrew, Greek, Thai, Arasbic, etc.,
require special treatment. No general scheme has been devised for making
software transpertable to these countries, and the implementation means will

be specific to each country,

Page 58

13.0 MANAGER TRAPS

Error returns:
NJ job does not exist
NC' job already active

The special trap #0 is ussd tg snter supsrviscr mode. The ussr should siare

the status registar scmewhers before calling this trap, so thst hs can retuen

tc user mode by rastoring it to its previcus vatus.

MT .ACLCK
L T T T L T T T T
* TRAF #1 DUO=815 MT.ACLCK =
* %
* Adjust the cleck *
* =
* Call parameters ' Return paramaters *
* *
* B1.L adjustment in seconds D1.L time in seconds ®
® D2 ' pe 7?7 ®
* b3 D3 P77 *
* AD A0 P77 *®
® A1 At preserved *
® A2 A2 preserved *
* A3 A3 preserved =
* *
B T L L T T E LT R P R e e
As setting the clock takes a significant time, no adjustment is
made i{ a call is made to adjust the clock and D1=0.
Time starts at 00:00 1 January 18B1.

MT.ACTIV
B T T S S e I TTI LTI,
% *®
* TRAP #1 DO=%A MT.ACTIV *
* *
* Activete & job *
* %
* Call parameters Return parameters *
* 7 *
* D1.L job ID D1.L job ID *
* D2.B priority (0 to 127) D2 preserved *
* D3.W timeout (0 or -1) D3 preserved *
* AD A0 base of job ctrl area ¥
® A1 A1 preserved ®
& A2 ' A2. preserved *
® A3 A3 preserved if D3=0 #
* *
* #*
* *
* *
* *
% %

. gk oo ol oo e ot oo ot e ot o e ot oo e o o e o o ot e et o el o oo oK o o o o e ok A e g o Ak R ok

This activates s job in the transient ares. Execution commences
at the start address defined when the job was created.

Page 57

If the timecut is zero then the execution of the current Job
continuas, otherwise the current job will be suspended until the
job activated has completed. The trap will then return with the
error code fTrom that Jjob. ‘

MT .ALBAS

MT .ALCHP

Page 58

Tt T LT T T DT T T T TOrMn e ooy
* TRAP #1 D0=%18 iT .ALBAS *®
* *
* Atlocate Basic program zrea ¥
* =
* Call parameters Heturn parsmsters =
E- &
® 041.L number of bytes reguired O1.L nr. bytes allogated *
* D2 Dz 777 %
® 83 b3 ?7? ®
= AD AG 297 %
= oM Al 799 *
* A2 A2 ?9? *
* A3 A3 ?7? *
* AE bsse address A6 new base addrass *
* A7 user stack pointer A7 new stack pointer *
% ' *
* Error returns: *
= %
¥ OM out of memory *
® #

Bk kR Rk ok R R A R N sk ek o ok ko Rk sk R Ak K

S0 s s e s e 9 o 3o 3 e 2 e o 3 2o ek o e o o s e o o e o e ok e e e ot e e o e o ok s e ot o ol e o e A o e e B

* %
® TRAP # DO=$%18 MT.ALCHP ®
* x
¥ Allocate common hesp area *
* *
® Call parameters Return parameters ®
% ®
* D1.L nr. bytes required D1.L nr. bytes allocated *
* D2.L owner job ID D2 P97 ®
* b3 B3 P27 *
* AD A0 base address of area *
* A1 A 777 *
* A2 A2 797 *
* A3 A3 7?97 ¥
* *
* Error returns: *
% %
* OM out of memary *
* NJ job does not exist *
%* *
*

e i e L S

-

This trap is a specific example of the general heap allccation

mechanism
described in section 2.1.4 and accessible using MT.ALLOC.

Errdr returns:

OM ogut of memory
NC unable to allocate (TRNSP area not empty]

MT.ALLOC
R R R R R R R A R R R e R Rk b e e
* %
® Trap #1 BO=3SC T.ALLCC =
% _ =
= Atlocates an arsa in a heap *
- i =
® Call parameters Heturn parameters *
% %
* D1.L length reguirsd B1.L length silocated *
= o2 B2 P77 =
o3 B3 PrT ®
* A0 ptr toc pir to free space A0 bases of area allocated®
* A1 A1 292 *
* A2 A2 277 *
* A3 A3 797 *
* AE base address A6 preserved *
E *
= Error returns: ®
* *
® 0M nc free space large enough *
* *
e T L Ly Y T T P P e
Twa trap entries are provided for user heap management where this
is reguired to be atomic. AB is used as a base address for both
this call and for MT.LNKFR so that AD0 {and A1) 1is an address
relative to AB.
See section 2.1.4 for details of the heap mechanism.

MT .ALRES
L3S g s e s it R i S s S E LTS3
* %
® TRAP #1 DO=S$E MT.ALRES *
* £
* Allocate resident procedure area =
* %
* Call parameters Return parameters ®
-] %
* D1.L number of bytes reqd. D1 ?7°? *
* b2 b2 ?9? *
* B3 D3 ?e? #
* A0 A0 base address of area *
* A A1 ??? ®
* A2 A2 7?77 *
* A2 A3 ?77? *
* %*
* %
£ #*
x *x
* %
% %

2 s s e o o o e o el o o ot o ol e Bl o e e e o R e e e e R R e e R ek ke R e

This trap, in common with its partner MT.RERES (rslease residant
procedure area) should only be invoked when the transient program
area is empty. '

MT . BAUD

M7 .CJCB

Page BO

3

B L L T L T T T o T LT T g g PP i P e e T

= TRAP #1 D0=812 MT .BAUD *
* *
® Ssts the baud rate *
® *
= Call paremetars Heturn parameters *
* %
* 01.¥W baud rate D1 ?%? =
G2 02 pressrved ®
* o2 £3 preserved *
& 2m AD = d &
AG 0 presarve
* A 41 presarved *
¥ A2 AZ preserved ¥
® 3 A3 preserved *
* *
= #
B T T T T L LT L T 1 T T T EEer e

A FEERAREFRE R R R R FR R Rk Rk kb n kR pk R Rk dhhRey

TRAP #1 DO=%1 MT.CJCBE

Creates a job in transient program area

Call paramsters Return parameters

B1.L owner job ID D1.L job ID

b2.L Llength of code [bytes} D2 preserved

D3.L length of data space D3 preserved

AO A0 base of area allocated
A1 start address or O A1 preserved

A2 A2 preserved

A3 A3 preserved

Error returns:

OM gut of memory
NJ no room in job table or B1 is not a job

R I I R R T T S AT R S 12
LR L B T O R A N I B

e s e e o et ol e o s ot ool o e et o e o e o e o e s e o o ool o e o o o e e o e e e o e o ot et ke B

This &rap allocates space in the transient program area, and sets
up a job entry in the scheduler tables. This does not invoke the
Jjob and the only imitialisation is that two words of 0 are put an
the stack. The program itself would normally be loaded, by
another job, into the space allocated, after this system call.
The stack pointer saved in the job control area points initially
to two zero words on the stack {at the highest addresses 1in ths
Jjob's data area); 1if channels are to be opened for the job, or a
command string is to be passed to the job, then this can be done

before the job is activated.

If D1 is negative, the new job is 1independent, otherwise it is
owned by the calling job.

MT .DMODE

MT.FREE

O T L L L L L T T e T e T T T T T T p o s
= =
® TRAP #1 DO=%10 MT .DMORE *
* %
* Sets or reads the display mode ®
= ®
® Call paramstars Return parameters ®
®
® 01.B key -1 read mode 04,8 display mods *
* 0 mode is 4 colour #
= 8 mode is 8 calour *
b2.B key -1 read display O2.B display type ®
* 0 monitor =
* 1 685 line TV =
* 2 525 line TV *
* £

® The mode when '"TV' is selected at switch—on is set to *
® 1 or 2 depending on the version of QL shipped *®
* %
03 B3 preserved *
AD Al preserved ®
* A1 A1 preserved ®
* A2 A2 preserved *
® A3 A3 preserved *
* A4 797 #
* %

B gy T T T L g g g S B P I T T T

This call is used to set or read the current display mode. It s
treated as a manager trap as it affects all the displayed windows.
If a call is made to set the screen mode, then all the windows on
the screen are cleared and the character sizes may be adjusted.
Obviously, there are serious risks involved in calling this trap
to set the mode when there are jobs in the machine accessing the

screen.

e e e 3 e o s e ot ot e e e o o e o e o e e s e e o o ot o e s s ok e e o o e ek e sk o e o o o e s ok e A s ol o

* *
* TRARP #1 DO=%6 MT.FREE *
% E
* Find largest contiguous free space that may be *
® allocated in the transient program area *
% %
* Call parameters Return parameters *
* %
* D1™: D1.L Length of space found *
* D2 pa ?7? *
* 03 - ba 27?7 *
* AD AC 777 *
* Al A1l ?2797? *
* A2 A2 277 *
® A3 A3 2?97 *
* *

Ak kR R kA kA ek ok Rk sk e g kA R Rk ek

MT .FRJOB
kA e e R R e R R R T g Rk ke
* %
* TRAP #1 DO=8% MT .FRJCB =
* *
* Force remove job froem trensient program ares *
* *
* Calt parameters Return parsmetsers ®

. * =
* B1,L job ID B1 e *
* p2 pe 777 ®
* 0D3.L srror code p3 727 #
* Al AD 797 ®
® Al Al P27 *
* A2 A 77 =
® A3 A3 727 *
* >
* Error returns: *
% *
* NJ job does not exist *
* #
i e L
This inactivates a complete job tree and deletes all jobs in it.
If D1 is a negative word then the job is the current job.
Neither of the traps MT.FRJOB or MT.RJOB to remove jobs can remove
job O.
Neither of these traps are guaranteed atomic.
If there is a job waiting on completion of any job removed, this
is released with DO set to the error code (ses MT.ACTIV DO=$A]).

MT.INF
ey T I T T T TR P R P P MU P P ST JUTOPA s JoR O
* %
* TRAP #1 DO=$0 MT . INF *
* *
* System information *
*
* Call parameters Return parameters *
* *
* D1 D1.L current job ID *
* p2 : D2.L ASCII version [(n.nn) *
* D3 7 D3 preserved *
* AQ : A0 pointer to system vars*®
* At A1 preserved ¥
* A2 A2 preserved ! ®
* A3 A3 preserved *
* . | *

oo ok o e o ook sk ol o ok o oK okl o e e e o ot e o R ok o o o e o ok e e ool e Rl e e e ke e

Page 63

B T T T b L e o E oy P g T T T T Lt T T F P raepragrigey

kS
i
4t
4

TRAP #1 DO=%11 MT.IPCOM

Sends a command to the IPC

L T T L T

S

*

*

*

= Cal! parameters Return parameters

* ki B1.B rsturn parameter

= Bz D2 preserved

= B3 B3 preservsd

* D5 297 #
® . D7 ?2? *
* A0 AD preserved *
* Al A1 preserved *
® AZ A2 preserved *
® A3 pointer to command A3 preserved *
x =

T L g T P T P E e P

This trap sends a command to the IPGC.

A command sent to the IPC is a nibble followed by a stream of
nibbles or bytes being the parameters of the command; some
information may then be returned from the IPC. The command format
for MT.IPCOM 1is a header describing the command to he sent,
followed by the parameters to be sent, followed by a byte
indicating whether a reply is expected. The IPC communication is
completely unprotected and the command must not contain any errors
or else the entire machine will hang up. IPE communications is a
very slow process and excassive use of the IPC, for example:
poliling all rows of the keybsard - the cursar keys have been
organised to all be in one row, will cause very high processar
overheads.

The command format allows 0, 4 or 8 bits to be transferred from
each hyte in the parameter block. This is encoded in 2 bits:

00 send least significant 4 bits

01 send nothing
10 send all B bits
11 send nothing.

The complete command format is:

1 byte the IPC command nibble in the LS 4 bits;
1 byte -. the number of paramster bytes to follow;
1 tong word containing the codes for the amount of each

- parameter byte to be sent in reverse order:
bits 1,0 the amount of the first byte to send
bits 3,2 the amount of the second byte

etc.;
n bytes the parameter bytes
1 bhyte tength of reply enceded in bits 1,0.

Most of the IPC commands sre for use by the operating system and
any attempt by application programs to use these is Liabls to

Page 64

cause loss of data or worse. There are three commands for the IPC
which may be used by applications programs:

8 read 2 row of the keyboard, 1 paremetar
4 bits the row number
8 bits reply

$A initiste sound, B paramsters
8 bits pitchl
8 pits pitch2
16 bits interval betwesn steps
16 pits duration
4 bits step in pitch
4 bits wrap

4 bits randamness of step
4 bits fuzziness
no reply

$§8 kill sound, no parameters, no reply.

Page 65

MT.JINF
-t 3 33 i s A i A s s g s R
% =
* TRAP #1 DO=s$2 MT . JINF *
= %
* Informaticn an & job ¥
& >
= Call paremeters Reiurn parametsrs *
* *
* B1.L job ID 0%.L next job in tres ®
* D2.L job &t top of tres D2.L owner job *
® B2 03,.L MS8B —ve if suspended *
® LSE priority *
* AD ‘" AD base address of job ®
* A1 A 297 *®
* AZ A2 preserved ®
® A3 A3 preserved ®
* _ *
* Errar returns: *
* *
¥ NJ job does not exist #
* _ *
T L L L PP P
This trap returns the status of a jaob.
This trap may be used to check the status of a tree of jobs. On
each call D2 should be the ID of the job at the top of the tree;
to scan a complete tree the trap is made with D1 being the return
value of the previocus call. When the tree has been completely
scanned D1 is returned equal to zero.

MT.LDD See the entry for MT.LXINT for details.

~— MT.LIDD See the entry for MT.LXINT for details.

MT .LNKFR
R LT T LT T P PR L TP e P e
¥ %*
* Trap #1 DO=50 MT ,LNKFR *
% *
* Links a free space {back] into a heap *
% %
* Call parameters Return paremeters *
* *
* D1.L Length to Llink in D1 ??? ®
* b2z g2 7?7 *
* N3-. D3 ?9? *
* AD ~ base of new space AD 772 *
® A1 ptr to ptr to free space A1 7?77 *
* A2 A2 P77 *
* A3 A3 277 *
* A8 Dbase address A6 prsserved *
* *

T T P LI T I IR LT PRI L E PR L P £ EE T EE

AB is used as a baese address for this call and for MT.ALLOC so
that AD (and A1} is an address relativa to AB.

Page 886

MT.LPOLL See the entry Tor MT.LXINT for deteiis.

MT .LSCHD S=e the sntry for MT.LXINT for deteils.

Page 67
MT . LXINT
B S d T T T B T P e P T vy
= *
* TRAP #1 DO=31A MT LXINT *
= 0o=%1C MT.LPOLL *
* DG=%1E MT.LSCHD *
* DE=820 MT.LICD *
Do=822 MT.LDD =
® Links an external interrupt service rautine ®
= a polling 50/80 Hz ssrvice routine ®
= a scheduler Lpop task ®
® an IG device driver ®
® or a dirsctory device driver *
* into the operating system ®
* %
* Call parameters Return parameters %
#* *
* D1 D1 preserved *
® oz D2 preserved *
* D3 D3 preserved *
* A0 address of link A0 preserved *
® A1 A1 2?97 *
* A2 A2 preserved *
* A3 A3 preserved *
* *
i e e L e T T T
MT .PRIOR
e R
* . ®
* TRAP #1 DO=$B MT.PRIOR *
* %
B * Changes job priority *
* *
* Call parameters Return parameters *
* ¥
* p1,L job ID D1.L job ID *
* D2.B priority [0 to 127} D2 preserved *
® D3 03 preserved ®
* A0 A0 base of job ctrl area *
* A1 A1 preserved *
* A2 A2 preserved *
* A3 A3 preserved *
* *
* Error returns: *
* *
® < NJ job does not exist hi
% %*
L L LR L T T T P R e P S T e
This call is used to change the priority of a job. If D1 is =a
negative word it will change the priority of the current job.
Setting the priority to 0 will causs 1inactivation. This call
reenters the scheduler and so a job setting its own priority to
zero will be immediately inactivated.
.~ MT.RCLCK

Pl L L T T T T e R g P g 3 P L F o e e e e T T PP T T T2 L T L L

ELIE S

4

Hod H O N G

L

Page

&

TRAP # DBO=%13 M7 . RCLECK ®
Reads the clack *

Call paramsters Return parameters =
*

01 D1.L time in ssconds *
o2 b2 TF? =
03 B3 preserved ®
AD AG 777 #
4 Al presarvsd =
2 A2 pressrved ®
A3 A3 presarved *
%

FmphdRdhifppkkfRiRdokhanddfhkhpRedrrhdRaRRhakiRpeRREpfrf Rk

88

MY .RED

MY . REBAS

MT .RECHP

MT.RELJB

Page 63

See the entry for MT.RXINT for details

=
= TRAP #1 DO=817 MT .REBAS =
* *
* Releszss Basic program area =
* ®
= Czii paremsters Return parameters *
*=
* 1.L nr. of bytes to reiease D1.L nr., bytes released ®
*® b2 D2 777 *
* 03 ‘ b3 7?97 #
¥ AD Ag 777 *
* A% Al 797 *
* AZ A2 ??? #
* A3 A3 797 *
® AE bese address A8 new base address *
* A7 user stack pointer A7 new stack pointer *
* *

St g ok S e ok e e sk e oo ok Moo o o ke e e ok ok e e ek e ek ok o o ok e ok R el ok e e e

R gL P g g B od T E g g P R P S R PR S

® *
* TRAP #1 DO=$19 MT ,RECHP %
#
* Release common heap area *
% *
* Call parameters Return parameters ®
% #
* D1 ?7? *
* D2 D2 777 *
* D3 D3 ??? *
* A0 base of area to be freed AD 2779 *
® Al Al 7?7 *
*® A2 A2 297 *
* A3 A3 777 *
¥ %

e e e g o e e e o e e e ol o o e e ol e o ol o o e e e e e ek R e e s e e e ok e ko ek ok

PP I e P L PR e P e P P e e L Y P L P L T T

* %
* TRAP #1 DO0=%9 MT.RELJB *
% %
* Releases a job *
* s- *
* Call parameters Return parameters *
= e x
* D1.L job ID D1.L job ID *
® D2 . D2 preserved *
* D2 B3 preserved ®
® AD A0 base of job ctrl area ¥
* A1 A1 preserved *
* A2 A2 preserved *
* A3 A3 preserved *
* %

* Erroer returns:

=

* NJ not 2 valid job ID
&

3

The aciivity of Jobs can be c¢o
modi fication of the pricrity level
ingctive, at any other priority L=

o

[+1]
(=]

6]

o4

#

activation c¢r
priority level ©

e
Live.,

70

M7 .RERES

MT .RIOD

MT.RJOB

MT.RPOLL

MT .RSCHD

Page 71

3
ki3
*
1t
1
1
%
#
*
4
#
i
i
#*
1k
i+
#
1
+*
*
i
#
H
*
3
+
#
ki3
4
#
o
#
H
3
#
3
1
3t
At
it
i
1
¥
i
hh
k1
3t
i
*
t
3
L
it
4
dF
4t
it
&
I
it
It
a9t

TRAF # DO=%F M7 .RERES

Call paramsters Return psramsters
D1 4 777
oz Dz ?7%
B3 Dz 777
AD AT 77
A1 A1 7?7
A2 A2 7?7
A3 ' A3 7?77

Error returns:

NC unable to release [TRNSP arees nct empty)

BOAE S B B B B M W B B odr it d % B R W B
L

gkl bl ek kiR ek hka ek ke k kbR E R

This trap, in common with its partner, MT.ALRES {atlocate resident
procedure area), should only be invoked when the transient program
area is empty.

See the entry for MT.RXINT for details.

PP P T e TP L R E Y e R R P EL ST PR R T E S T P E e L T e

Error returns:

-

~ NJ job does not exist
NC, job not inactive

% *
* TRAP #1 DU=8%4 MT.RJOB *
& *
® Remove job from transient program area *
% *
* Call parameters Return parameters ®
x %
* D1.L job ID D1 ??? ®
* D2 pe2 ?27? #
® D3.L error code ps 797 ®
* AD Ao 999 *
* A1 Al 797 ®
* A2 A2 7?7 ®
* A3 ' A3 2?97 *
% %
% *
% *
% *
% #
% *

e e 4 o o e o e o e o ol e o ok o ok ok e ek e ok ok ok ke e e o R ok e e e R e sk AR ok ko ok ok

This trap removes a job {and its subsidiaries) from the transient
program area. Only inactive jobs may be removed.

See the entry for MT.RXINT for details.

See the entry for MT.RXINT for details.

MT .RXINT

MT.SCLCK

T T B L I
* %
® TRAF #1 O[0G=%18 MT.RXINT #
® bo=%1D MT.RPCLL ®
* DG=$1F MT .RSCHD *
*® DO=%21 MT.RIOD =
* po=%23 MT.RB0 *
%
® Removes =n extarnzl interrupt service routines *
* a poliing 50/80 Hz service routins *
® a scheduler Lloop task ®
® an 1D device driver &
® or a directory device driver *
* from the operating system #
* *
* Call parameters Return parameters *
* %*
* D1 D1 preserved *
* c2 : B2 preserved ®
* 03 D3 preserved *
® A0 address of Llink A0 preserved *
® Al A1 77 *
® Az . A2 preserved *
* A3 A3 preserved ®
% #

L T T T T P T P P P o P R P R e P A P P e

B2 2 -2 2 b 2 R e e 2 R s R R R R]

* *
* _TRAP #1 DO0O=%$14 MT .SCLCK *
* %
* Sets the clock *
* *
¥ Call parameters Return parameters *
* %
D1.L time in seconds D1.L time in seconds *
* b2 pz 7?7 ®
* D3 D3 ??? *
* AD A0 797 *
* A1 A1 preserved *
* A2 A2 preserved *
* A3 A3 preserved *
* *

deop ok e o e gk ok Sk e e de ok e e e e o ko e e el e o e i ol sk ol ke ek o e ek e i e e sl e

W71 .SUSJB

MT.TRAPV

Page 73

B L T L T g A T T T TPt
= %
* TEAP #4 DO=$8 M7 .80U848 ®
¥ %
. Suspends a job *
3 =
® Call parameters Return parameters ®
* %
* B1.L job ID Di1.L Jjob ID *
® D2 D2 preserved *
® D3.¥ timsout period B3 preserved #
* AC A0 base of job ctrl ares *
* A1 address of flag byte A1 preserved *
* A2 A2 preserved ®
= A3 A3 preserved *
x *
* Error returns: *
&
NJ not & valid job ID ¥
% %

88 5t e e e o e 3t 4 s e o ok o el o e o o o ol e e e e ook e ol o o o e e 33 o e o o o o el o e e e e o e S

A job may be suspended for an indefinite pericd, or until a given
time has elapsed. The timeout pericd is up ta [($7FFF times the

frame time]}.

If the job ID is a negative word, then the current job is
suspended. The flag byte is cleared when the job is released. If
there is no flag byte, then A1 should be 0. If the timeout period
is specified as -1, then the suspensicn is indefinite; no other
negative value should be used. If the job is already suspended,
the suspension will be reset. ALl jobs are rescheduled.

g T 1 T T T PO g L R T T T T T T T e e g e S

* x
* TRAP #1 D0=$7 MT . TRAPV - w
% %
* Set the per—job pointer toc trap vectors *
®) %
* Call parameters Return parameters *
& *
* D1.L job ID D1.L job ID *
® D2 D2 preserved *
* D3 03 preserved *
* AD A0 base of job *
* A1 pointer to table A1 P99 *
* A2 - A2 preserved *
* A3 A3 preserved *
% : %
* *

7 e it e o i o e o e e o e o ot o o e e o o 9l o ol e o e e o o e ke ofe e o o ko o it e e ol ok o e e o e o

Note: When a routine in the table is entered as a result of an
exception, the CPU is 1in supervisor mode. The routins should
return with an RTE command [not RTS). Any registers used must be
saved and rastored,

ID.CLOSE

I0.DELETY

14.0 I/0 MANAGEMENT TRAPS

Page 74

g L L e e I T T T e T LT T
* x
® TRAP #2 D0O=$2 IG.COLEGSE =
¥ =
* Cigses & channel =
* *
* Call paramstzrs Return parameters *
=
* 01 D1 preserved =
* b2 D2 preserved *
* D3 D3 preserved ®
* AG channel ID A0 7?77 =
* A1 A preserved *
* A2 A2 preserved x
® A3 A3 presserved *
® %
* Error returns: ®
* %
* NG channel is not open ®
%

&
e s s o e o ot e s o e o o e o oft 9o o o o e o ot o e e ot o e e o o e R ke o o e A e ok ok ok e AR

ek e ok o sl ok sk e e ok sl ok ok e kol o ok s ko o e ke ook e e ok ok e o e e e dR e e o e

TRAP #2 DO=%4 ID.DELET
Delete 2 file
Call parameters

D1.L job ID (as file openl!)
D2
D3
A0 address of channel name
A
A2
A3

Error returns:

OM gut of memory

L B R A N EE

Return parameters

D1
D2
b3
AD
A1
A2
A3

NF file or device not found
*. BN bad fils or device name

M3) 3 O

=)
-3

?

eserved
?

R R]
Xt

“3 =3 -

preserved

NO not opened — too many channels open

L B - R T T S A PRy

g g T g g T T T X B T T R T LT P g S)

Page 75

Error returns:

OM gut of memory
NF drive not found
IY drive in uss

FF format failed

ID.FOAMT

B L T L L L L LT T T R P F T R P e s
* TRAF #2 DU0=§3 I0.FORMT ®
£ *
® Format a sectored medium ¥
* *
* Call parametars Return parametars *
D1 01.W number of good sectors®

Do DZ2.% totel nr of sectors #

a3 03 preserved ®

A0 ptr to medium neme AD P97 *

A1 Al preserved *

A2 . AZ presarved ®

A3 AZ preserved *

%*

%

*

*

-

%

#

%*

L B R I SR R)

The medium name is in the form of a character count {word)
followed by the ASCII characters of the drive name, the drive
number, underscore then up to 10 characters for the medium name.
For example, MOV1_November.

I0,0PEN

Page 76

e EEE L B e P e P T T

ki
1+
H
3k
#
i
i
Ll
I
1
#
3
4+
it
i3
it
1t
W
H
It
*
1t
%
1
#
1
#
1*
1
i
ki3

= TRAP #2 D0=%1 I0.0PEN
=
* Gpen 2 channel
Catt parameters Return paramsters
81.L job ID D4 Job ID
02 ue pressrved
03.L code 03 oreserved
0 old {exclusive]l fiie or devics
1 old {sharedl fils
2 new (exclusivel fite
3 new (overwrite) file
4 gpen dirsctory
Al address of channel name A0 channel ID
At A1l pressrved
A2 A2 preserved
A3 A3 preservad

Error returns:

NO not opened — too many channels open
NS job does naot exist

CM out of memory

NF file or device not found

EX file already exists

Il file or device in use

BN bad file or device name

L L I R I R TR N A N N R

i
-3
"
%
=
ES
*
*
*
*
*
#*
*
3
x
3
®
=
=
®
=
=
*
#
#*
*
%
%*
&
*
w

S LT T E T T e 2 E R R g g g S L

If the job ID is passed as a negative word (for example —1] then
the channel will be associated with the current job.

- The file or device name should be a string of ASCII characters.

This string 1is preceded by a character count {word), the pointer
should point to this word [on a word boundary].

The error return "BN" indicates that the name of the device has
been recognised but that the additijonal information is incorrect,
for example CON_512y240.

The code is usually ignored for access to any non—-shared device:
in practice, this 1is anything other than a file store. If the
error cede is non—zero then no channel has been opened.

Note that New [overwrite} 1is not currently supported for
Microdrive files.

Page 77

15.0 1I/0 TRAPS

Errar rsturns:
* NC not cdhplete
NO. channel not open

FE.CHECK
ke R R T N A RN R R R R R e R ek e R T ek
* %
* TRAP #3 D0=840 FS.CHECK =
= *
* Check all pending operaticns on &g file *
* =
® Call parameters Rsturn parameters =
% x
& 81 D9 797 ®
* 02 02 preserved =
* P3.W timeout 82.L presarved *
* A0 channel ID A0 presarved *
*® Al Al 7?77 *
* A2 A2 preserved ¥
® A3 A3 preserved #
% _ *
* Error returns: *
* *
* NG not complete *
* NC channel not open *
%
T Ty g Y L T T LR PP TP PO P ST TR PR EEEE RS PP
This trap is used to check whether all of the pending operations
have completed.
FS.FLUSH

D L T T L T T T PP PR TR P e e
" . ‘ %
* TRAP #3 DO=%41 FS.FLUSH *
% #
* Flugsh buffers for this file %
% %
* Call parameters Return parameters *
#* *
* b1 D1 227 *
* D2 02 preserved ®
* D3.W timeout D3.L preserved - *
* Al channel ID AQ preserved *
* A1 A1 7?7 *
* A2) A2 preserved *
* A3 A3 preserved ®
* *

% %
% %
* *
* %
* *

B R P g g g T L g R T P S R P P T P TR e P e

Whan a write operation to a file is complete, the data written may
still be in the slave blocks rather than on the file. For further
details please see Section 5.2 on File I/0. This call may be used
to check that a file is in a known state.

FS.HEADR

FS.HEADS

CEE A 2R S 2 BRI TN K R S

TRAP #3 D0=$47 FS.HEADR *
Read file headsr *

F3

Catl parameters Return parameters =
D1 D% .W length of heeder rsad ¥
D2.W buffer Length 02 preserved ®
D3.W timeout 03.L presarved =
AD channel ID A0 preserved *
A1 base of read buffer A1 top of read buffer ®
A2 A2 preserved *
A3 A3 preserved *
&

Error returns: *
#

NC not complete *

NO channel net open *

BO buffer gverflow *

2

s 9t o ot s e o e ol s o o e e sl e e o e ke e o S e e o e e e o o o o ofe e o o e o e e e e e e e v o R R s ok

The read header call is provided so that a Job can allocate the
space for a load call as well as determining the characteristics
of a file. The buffer provided must be at least 14 bytes Llong.
In the case aof a trap to a pure serial device, then the lLength of
the header returned in D1 will be spurious.

The file pointer is such that position =zeroc dis the first byte

after the header. Thus block boundaries on standard directary
driver files sre at positions 512%n-64.

B T L T T T T LR T T IS T D E L L T

Error returns:

NC not complete
NGO channsl not open

% s
® TRAP #3 DO0=846 FS.HEADS *
* %
* Set file header *
% %
* Call parameters Return parameters *
* _ *
* D1 D1.W length of header set *
* D2 02 preserved *
* D3.W timeout D3.L preserved *
* AD"; channel ID A0 preserved *
* A1 base of header def A1 end of header def *
* A2 : A2 preserved *
* A3 A3 preserved *
x *
% =
* *
* *
* *
* *

B S L e L LT T L L L L T Tt r P g R P R A S

Page 78

This call sats the first 14 bytes of the header, The Llength of
fils witl rnormally be overwritten by the filing systam. When &
heesder iz sent over 8 pure sarial devics, then the 14 bytes of ths
header are preceded by & byte SFF.

F5.L0AD

FS .MDINF

Page 80

B T T Y T L O L)
o 2 _ o
TEAF #3 O[0=:48 FE.LCAD

load file into memary

EE I - L R B R

Call parameiers Feturn parsmeters

51 DT P77

Dz.L Llength of file 02 pressrved

D3.W timesout - 03.L presarved

A8 channel ID AZ preserved

Al hase address for load A1 top address after Load*
A2 A2 preserved

AS A3 preserved

Errar returns:

NQ channel not open

LR IR R T IR A U T)

* ¥ O OH OH o #

Lokt b 2 e R 2 R e 3 S R L L R R T R e s

Files may be loaded into memory in their entirety with the file
load trap. If the transient program area is used for this, s trap
#1 must have been invoked to reserve the space bhefore the file

load trap is invokad.

B3 should be set to -1 before both this trap, and FS.SAVE, and the
base address in A1 must be even.

e E E T T T T B e e g g P P P P T T Py

TRAP #3 DO=$45 FS.MDINF

Get information about medium

O R OB O R N ¥ H W OB OF OH BB ¥ O N @ B

Call parameters

D1

b2

D3.¥W timeout

AG channel ID

A1l ptr to 10 byte buffer
A2

A3

Error returns:

NC not complete
NO channel not open

Return parameters

D1.L empty/good sectars
D2 preserved

D3.L preserved

AD preserved

Al end of medium name
A2 2?77

A3 7?97

B o3 B o H W % B W % B O O W M o

2 30 30 3 o ok e o ok e 3o e 3 o 3 o ot e o e o o 9 o o o o o R o e o e e o 9 ol o ol ok R o o e e o oK RO o A o o K

The name of the medium, its capacity, and the available space

be obtained for a file aor directory that is open.

Page 81
The medium nsme is 10 bytss long and Lleft justified. Any

The number of empty sectors is in the most significant word {mew!
f D1, the <totsl availsble on the medium 1is in the lesast
ignificant word {lsw].

A sector is B1E bytes.

FS ,POBAR
A R N R R R e e R Rk ke R R sk sk g
= %
= TRAP #3 DO=%4a2 F5,FOSAB ®
3 x
* Position file pointer sbsolute =
® Call paramsters Return parsmetars ®
£ %
* D1.L file position 01.L naw file position =
* D2 B2 preserved *
® D3.W timeout £3.L presarvad ®
* AQ channes!l ID Al preserved *
* A1 A1 777 =
* A2 A2 preserved ®
* A3 A3 preserved *
* 3
* Error returns: ®
% %
* NC not complete *
* NG channel not open *
& EF end of file *
& %
g L T T T R B A T T T T P e
FS.POSRE

g I T T T T LI TS g F F Lty
TRAP #3 D0=$43 FS.POSRE

Position file pointer relative
Ball parasmeters Return parameters

D1.L offset to file pointer BD1.L new file position

b2 pe preserved
D3.W timeout D3 preserved
A0 channel ID Al preserved
Al Al ???

A2 A2 preserved
A3 A3 preserved

Error returns:

NC not complete
NGO channel not open
.. EF end of file

30 8 e s e i o e o o S e o e s ol ok ol e e o e o o e s e ok ko oot o o e e el o ko ok e o sk ok K ok e ok kR

L B R R BN R T A B
#OR O R R OB OH O R OHOF B O R R OB N B

If a file pasitioning trap returns an off file limits error, then
the pointer is set to the neasrest (imit, this being O or end of
file. The relative file positioning may, of course, be used to
raad the current file position.

i)
o

(4
b
<
m

I0.EOLIN

Page 83

O 4 4

Error returns:

ND channel not open
DF drive full

3

= TRAP #3 DO=848 FS.BAVE

%

* Save fiis from memory &
* %
* Call paremetars Return parameiers ®
* *
® C1 51 7Y *
* D2.t length of file D2 presesrved ®
® D3.¥ timeout C3.L presesrved =
* § channel ID A0 preserved *
* A1 base address of file A1 top address of fite *
* A2 A2 preserved ¥
* A3 A3 preserved *
* *
* *
*
* %
® *
* %

EEmkEF kR kR R Rk Rk kR Rk kR e Rk Rk Rk ko e r vk ok

In common with FS.LOAD, D3 should be set to —1 before this trap,
and the base address in A1 must be even.

SR Ak Rk R F kR R R Rk kR kR Rk kR K R Rk Rk ke e g e ek

* *
* TRAP #3 DO0O=3%4 I0.EDLIN =
£ *
* Edit a line of characters *
* {console driver only] *
% *
* Call parameters Return parameters ®
* *
* D1 cursor/line length D1 cursor/line Length *
* D2.W Llength of buffer 02 preserved *
D3.W timeout D3 preserved *
® A0 channel ID A0 preserved *
* A1 pointer to end of Line A1 pointer to end of Line*®
* A2 A2 preserved *
* A3 A3 preserved ®
* %
* Error returns: *
* *
* < NC not complete *
* NO channel not open ®
* BO buffer averflow %
* *

Aok ik Ak kR R kR Rk R ok ke sk e ok e g o Rk sk e ok

This is similar to the fetch line trap, except that the painter Al
is always to the end of the line, D1 contains the current cursor
position in the msw end the length of the line in the lsw and the
line (from the current cursor position} is written out to the
console when the call is made. The Lline should not have a
terminating character when the trap is made, but the terminating

character will be included 1in

Enter {ASCII 10), wup
terminating characiers.

cursor

the <character cgunt on
cr down curscr are sli zece

I0.FBYTE
e T L L L LT T T Lo L L ey o e T T T
% %
* TRAP #3 DO=31 I0.FBYTE *
E =
b Fetch a byte *
* *
* Call paramesters Return psramsters ®
* %
b1 P1.8B byte fetched ®
= D2 B2.L preserved *
* D3.W timsout D3.L preseryved *
* A0 channel ID A0 preserved =
= A Al 2?97 *
¥ A2 A2 preserved ®
* A3 A3 preserved *
* *
* Error returns: *
% &
* NC not complste *
*® "NO channel not open *
* EF end of file ®
® %
R L T e L T T T LT P P P E P RS s
I0.FLINE
B L L LT T T T E E T PP g s
% #
* TRAP #3 DO=$2 or 3 *
* *
* DO=%2 I0O.FLINE fetch a Line of characters terminated¥®
* by ASCII <LF> ($A) *
* DO=3%3 I0.FSTRG fetch a string of hytes ®
% %
— * Call parameters Return parameters *
* %
* D1 01.W nr. of bytes fetched #*
* D2.W Llength of buffer B2.W preserved *
*® D3.W timeout B3.L preserved *
* A0 channel ID A0 preserved *
* A1 base of buffar A1 updated ptr to buffer *
® A2 A2 preserved *
* A3 A3 preserved *
® %
® Error returns: *
% *
* NC not complete *
* *. NGO channel not open *
* EF end of file *
* BO-buffer overflow (fetch Line only] *
*

s o Aok Mok g ko e ek e e e Rk Rk R R ke Rk o Rk ok ok e e ok sk ok ko ok ok ok

The character count of a fetch a line trap includes the Llinefeed
character if found.

I0.FSTRG See the entry for IO.FLINE for details.

I0.PEND

I0.SBYTE

et st i+ttt L R e e e - T
*
* TRAP #3 DO=50 I0.PEND *
* x
* Check for pending input *
%
* Call parameters Return paremetsars ®
k-3 2
= b1 01 Vol =
* 23] 2.4 pressrvad *
® D3.%W timsoud D3.L presarved

* AG channel ID AD preserved

* A1 AT 777

® A2 A2 presarved

* A3 A3 preserved

%

* Error returns:

=

* NC not compiete [no pending input]

* NO channel not open

* EF end of file

P

ERE R R E R R R R R R kAR PR R RS R R R kR ko o ok sk ok ok kAR R e v e

This trap is used to check for pending input on a channel.
does not read any data or medify the input channel in any way.

R R R SRR RE R PR R R R R R PR FER R R R RR Rk kR R Rk ek

TRAP #3 DO0=$%5 ID.SBYTE
Send a byte
Call parameters Return parameters
D1.B byte to be sent D1 779
D2 D2.L preserved
D3.W timeout D3.L preserved
A0 channel 1D A0 preserved
A1 A1 2?7
A2 A2 preserved
A3 A3 preserved

Error returns:

~. NC not complete

" NO channel not open
DF-drive full
OR off window / paper etc

R O B IS T R R Y
o3 O H S 3 B B B O RO W W N W o #

e e o st e o e o o oo e ot ol ot o ok o o o oK R o ook o e o e o e g oo e e ool i e o e o e e e o

o 36 W 3 3 % o % # M 4

It

I0.8ETRG

SD.ARC

SD,BORDR

RS N |

—|

y

T

¢
e

[#%]

£l
o]

Il

£
~4
4 J
v]
n
Lﬁ
oy}
I

H#
FTa

Send & siring of byteas

* Call parameters Return parameters ®
= %
* D4 D1.W np. of bytes ssnt #
¥ D2.W nr of bytes to be sent D2.W pressrved ®
® D3.¥ timecus 03.1L preserved #*
* AQ channsl ID AD preserved &
* Al base of buffer A1 updated pir tg buffer *
E AZ A2 preserved x
= A3 A3 preserved *
* x
* Error rsturns: *
* %
® NC not complete *
® NGO channel not open *
* OF drive full ®
* %

e e e o o e o ot e ol sl o oo el o e e i o el o o e e R oo e o e A o e e el o s s R R

Please refer toc section 5.3.5 for details of the special treatment

afforded to newlines on the conscle or screen device.
See the entry for SD.POINT for details.

e e e e e e st ol e 3 36 s e i o 3 e o s o o o o e o e e e o e o o e sk ok o e s o o o o A e e ok o ok A o e o ok e R oK

Error returns:

NC not complete
. NO channel not open

E? =
* TRAP #3 DO=$C SD. BORDR *
® *
* Sets the bordar width and colour *
& *
® Call parameters Aeturn parameters G
® =
* 01.8 colour D1 ?7? ®
® D2.W width D2.L preserved *
* D3.W timeout D3.L preserved ®
* A0 channel ID A0 preserved *
® Al A1 preserved *
* A2 A2 preserved *
* %=
* %
* =
& #*
% s
= *

T gL L L L L T LT PP P S

This call redefines the border of a window. By default this is of
ne width. The width o©of the border is doubled on the vertical
edges. The border is inside the window Llimits. ALl subsequaent
screen traps [(except this onel) use the reduced window size for
defining cursor position and window limits,

SD.CHENG

Page 88

ecial case, the colour $80 defines a transparent border so

g =p
thzt the border contents are ngt altered by ths trap.

If the call changes the width of the border, then the curser is
eset to the home positicn {top left hand corner].

-3

See the entry for ED.PXENG for details.

S0.CLEAR

SD.CLRBT
SO .CLRLN
SD.CLRRT

SD.CLRTP

Page
e T L T L T T T
S ¥
* TRAP #2 D0=320 to 24 *
* Ciears part or all of a window *
* %
D0=$20 ED.CLEAR clesr 2li of window *
= Do=%21 SDL.ELRTF clear top of window ®
* DO=se2 S0.CLRABT c¢ilear botiom of window =
DO0=$23 SD.CLRLN c¢iear cursor iline ®
* D0=g24 SCD.CLRART ctiear right hand snd of cursor Line *
* *
* Call parameters Return paramsters =
* *
® b1 D1 o *
D2 D2.L preservad *
* C3.W timeout B3.L preserved *
® A3 chennel ID AQD preserved *
* A1 At 777 *
* Ag AZ preserved *
* #
® Error returns: *
* *
* NC not complete ®
® NO channel not open *
% #

B T e g gy P g g Ry Y R T T LT T P e T e e ey

The clear window traps can clear all or part of a window.
clear a part of a window the curscer is used as a reference.
clear operation consists of overwriting atl the pixels 1in
designated area with paper colour.

The division between the top of the window and the bottom of
window is the cupsor line. The cursor line is in neither the
nor the bottom of the window.

The cursor lLine is the whole height of the current character fo
(either 10 or 20 rows). The right hand end includes the charac
at the current cursor position,

See the entry for SD.CLEAR for details.

.See the entry for SD.CLEAR for details.

See the entry for SD.CLEAR for details.

See the egntry for SD.CLEAR for details.

To
The
the

the
top

unt
ter

5D.CURE

S0 .CURS

SO.ELIPS

Page S0

B T T T e T L T R e g S ST 7 EE T FACPa e
* TRAP #3 DG=%E 50 .CURE =
* ®
% Engble the curscr *
* *
* GCatl parameters Return parameters *
* #
S ¥ 1 77 *
* o2 D2.L preserved =
* D3.¥W timsout 33.L preserved =
* Ap channel 1D A praserved =
* A A1 777 *
A2 A2 preserved *
* %
* Error returns: *
*
* NC not complete *
* NO channel ngot open *
* *

53#***#*******##***#*#**##*****#*##*##****#*#**##*#*****##***

The cursor is automatically enabled when a read lLine or edit lins
trap is issued to a console window.

e e e o o e e o o e s o e o e s oo e o o s ek e ok b e o ek e o e ko R ok ok e e ke ko ke koo

Error returns:

NC not complete
NO channel not open

® *
* TRAP #3 DO=3F SD.CURS *
* #*
* Suppress the cursar *
* ®
* Call parameters Return parameters *
#* *
* B1 D1 2?9 ¥
* pe D2.L preserved *
* D3.W timeout D3.L preserved *
® A8 channel 1D AJ preserved *
* A1 Al 779 *
* A2 A2 preserved *
* ®
* *
* ®
* *
* *
* *

s 3 e A 36 2 e 3 3 e 2k o e e s ol s o s o e ok e e e 0 o o ol ol 26 e o e el e e o sl e e e e o e A A R g Ar e e R A kA Ao A A
The calls to.suppress or enable the cursar do not return an error

if the cursor is already suppressed or enabled [respectivelyl, as
they merely ensure that the cursar is in the desired state.

See the entry for SD.POINT for details.

SOLEXTCP

SD.FILL

LI - T

L -

o4 WO B % # o o8 W N

ki3

TRAP #3 DO=88 SD.EXTOF
Calls an extended apsraticn

Call parameters Return paresmet

b1 parameter iy parametar
D2 parameter b2 presarved
D3.¥W timeout 03.L pressrved
A0 channel ID A0 presarved
A1 parameter A1 parameter

A2 start address of routine AZ preserved

Error returns:

£ not complete
NO channel not open
and anything from the operation roug

B g T LT L T T L T T T T e S T T T T I

&S

ine

L I L A LT

LU I R I B R O

g iRk R kR kg RRp xR R R R Rk kR Rk Rk Rk xRk kR ®k

This trap invokes an externally supplied routine
of the standard screen driver. 01, D2 and A1 are passed to

part

the routine, while only D1 and A1 are returned.
the routine is executed in supervisor mocde with AD pointing to the

channel definition block {see Sectian

system variables as for standard device drivers.

as

The

if it w

code wit

7.2} and AB pointing to

s o o o e st ko e e ok o ok e ok e ot oo e e o e s e ol o oo ke e e e A ke e e o e sk e e e e ke e

LA K T S TR N T R S S

TRAP #3 DOD=%2E SO.FILL

Fill rectangular block in window

Call parameters Heturn paramet
B1.B colour D1 ?7?

D2 D2.L preserved
D3.W timeout D3.1. preserved
A0 channel ID A0 preserved
A1 base of block definition A1 7?77

A2 A2 preserved

Error returns: -

NG not complete
NO channei not open
OR block falls ocutsids window

egrs

L B B R R T R R S T)

dedroap b Ao ded ok A R A ok Aok A e e e A g ek A e R e R e o e o K e o

This trap fills & rectangular block of a window with the curr
ink colour, taking into account the mode set by SD.SETMD.

1

gre

hin

the

ant

Page 92

The biock definition is in the same form as the window definition.
It iz 4 words long: width, height, X arigin and Y origin., The
origin is referred to the window origin.

This is a Tast way of drawing horizontal or vertical lines.

T T D L L T T LI T
* TRAP #3 DG=3835 E0.FLOCD ®
* *
* Turns area flecod on and off *
® : #*
* Catll parameters Return parameters *
* %
¥ 01.L key O=end fiood D4 P77 ®
= 1=start ar restart flcod *
* ge o2 prassrved *
* D3.W timeout D3.L preserved *
* AC channel ID AD preserved *
® A1 A1 727 ®
* A2 A2 preserved *
® A3 A3 preserved *
%
* Error returns: ®
£ *
* NC not complete *
NO channel not open *
% *

L e e E A 2 2 e e R et e R RS 2 P 2 1]

S0.FOUNT

SD.GCUR
SD.LINE
SD.NCOL
SD.NL

SD . NROW

Page 894

i
3t
a
i
%
4t
3t
i
1
I
a
#*
#
i+
3
1
i
#*
#*
i
it
3
#*
3
"
#
4+
L1
A
*
I
i
L1
a
"
k3
#*
i+
#
4+
3
*
#*
I
3t
#*
k1
*
*
*
4
1+
4
+#
%
3
o
1F
#
£
1+
3

SD.FOUNT

-
i |
n
RS
ks
)
7
o]
i
oy
)
3]

Sets or resets the fount

Call paremeters Return paremeters
B4 b1 PP

G2 BQ.L araserved
D3.W timeout 03.L pressrved

AD channel ID AD preserved

A1 base of fount A 227

A2 base of second fount A2 preserved

Errar peturns:

NG not complete
NGO channel not cpen

LR N R R T A I I B
L B R R U R O S T

L b it o bt S R R R R L S R S R S s et

The character fount is a 5x8 array of pixels in a 5x10 rectangle.
A default fount and s second fount are bhuilt into the HGM
although alternative founts may be seslected.

If the fount address is given as zero the default fount will be
used.

The structure of the fount assumes that up to a certain value
characters are invalid [default $1E}, from the next value {default
$1F] a known number of characters are valid {default $G61]. Thus
the structure is as follows:

$00 lowest valid character {byte)

$01 number of valid characters—1 [byte)

502 to $0A 9 bytes of pixels for the first valid character
$0B to $13 setc.

Each byte of pixels has the pixels in bit 6 to bit 2 ({inclusivel
of the byte. The top row of any character is implicitly blank.

If a character, which is to be written, is found to be invalid in

the first fount, it is written using the second fount. If it is
also invalid in the second fount, then the lowest valid charactsr

of the second fount is used.

The default fount extends from $20 to $7F.

See the entry for SD.POINT for details.

See the entry for SD.POINT for details.

See the entry for SD.POS for details.
See the entry for SD.POS for details.

See the entry for SD.P0OS for dstails.

SD.PAN

SD.PANLN
SO .PANRT
Sb.PCOL

SD.PIXP

B Y L T T L L L T T L L L L Lo T
= *
* TRAF #3 DO=218, 1E and 1F *
* *
% Pans part or ell of a window *
= *
DD0O=318 S0 .FAN pan all of window *
¥ D0=%1E S0.PANLN pan cursor Lline ¥
= DO=$1F SD,PANRT pen right hand end of curscr lins *
Call parameters Beturn parameters ®
* %
¥ 1.W distance to pan b1 7?7 ®
* 2 D2.L presarved *
* C3.W timesout 03.L preserved *
* AQ channel ID AQ preserved ®
* A1 . A1 ?7? *
® A2 A2 pressrved ®
* *
* Error returns: *
* %*
® NC not complete ®
* NO channel not open *
% %
T I LT LT L e R e L g L L ET TR TP b ey

The whole of a window, or the whole of the cursor Lline, or the
right hand end of the cursor Lline may be panned by any number of
pixels to the right or to the left. A pasitive distance 1implies
that the pixels will move to the right. The space left behind
will be filled with paper colour,

The cursor line is the whole height of the current character fount
{either 10 or 20 rowsl. The right hand end includes the character
at the current cursor pasition.

See the entry for SD.PAN for details.

See-the_entry for SD.PAN for details.

See the entry for SD.PQS for details.

ThREeFRERRE g g R iokER ek kg kR Rk R ek gk kdf gk R

*® %
* TRAP #3 DO=%17 SD.PIXP *
% - - *
*) Position cursor using pixel coordinates ®
* . %
* Call parameters Return parameters *
* *
* D1.W X coordinate D1 ?7?? *
* D2.W Y coordinate D2.L preserved *
* D3.W timeout D3.L preserved *
* A0 channel ID AD preserved *
* A1 A1 7?7 *
* A2 A2 preserved *
* *

Page 896

* Errar returns: *

* *

* NC not compiste *

I

= NO channel not open *

* R off window ®

%
P e T L Lt t E L e P e ey
The cursor position is the top Lleft hand corner of the next
charscter rectangle rsferred to the tap teft hand corner of the
window., Thisg trap clears ths pending newline in the window.

Page 97

i
i
#

LR O O B BRI R R A R R N

R R e R R RN R R R R R A e kR

TRAFP #3 DO=3520 SD.POINT

Do0=£31 SDLLINE

Do=532 5D .ARC

D0=833 SD.ELIPS

DO=334 SD.BCALE

00=838 SD.GCUR
Piot 2 point, line, arc, eiiipse, set scale or graphics
cursor position. Expects paramsters on the arithmetic
steck pointed to by (A1)

Call parameters Return parameters

D1 D1 ?297?
D2 D2.l prsserved
03.W timeout D3.L preserved
A0 channel ID AQ presarved
A1l arithmatic stack pointer At P97
AZ ' ' A2 preserved

Error returns:

NC not complete
NGO channel not apen

L B R T E S H J S Ty

R g P T Y T T g g Y B T T T T e PR PR e e ey

These four traps draw various lines and arcs in the window. Any
point on these Llines which falls outside the window will not be
plotted.

The format of the parameters required is as follows:

SD.POINT $00{A1)
$06 (A1)

$00(A1)
$06 (A1}
$0C(A1])
$12(A1]

8D.1INE

$00(A1)

$06 (A1)
.. $0C(A1)
< $12(A1)

$18(A1)

SD.ARC

SD.ELIPS $06{A1}
$068{A1}
$0C (A1)
$12{A1]
$18{A1]

SD.SCALE $0a(A1)
$06 (A1)

y—coordinate
x—coardinate

y-coord of finish of line
x—caord of finish of line
y—coord of start of Line
x—coord aof start of line

angle subtended by arc
y—coord of finish af Line
x—coord of finish of line
y—coord of start of line
x—coord of start of Lline

rotation angle

radius of ellipse
eccentricity of ellipse
y~coord of centre
x—coord of centre

y pasition of bottom Lline of window
x position of left hand pixel of windaw

Page 98

$0C{A1] length of Y zxis [height of window]
ED.GCUR s00iA1) graphics x cocordinate

s06{A1} grephics v coordinate

$CC(A1] pixei offset to right

$12(A1] pixel offset down
For =Ll the graphics traps, the parameiars on the A1 stack are
fLaat ng point, and coordinates =sre referred to an arbitrary
origin (defsult is 0,0) with an arbitrary scale [default is height
of window = 160 units].

-~
th
)
m
o
pon
-y

ing program must silocate at lsast 240 bytes an the A1

n
et
ll'l
2'\

SD.PUS

SO.PROW

SO .PXENG

Page 99

Curscr positicning by character intervals

D0=3%10 SD.POS sbsolute position
50=%11 ED.TAB tabulate
Do=$12 ShUNL newline
D0=813 S0.FPCOL previous column
Co=814 SD.NCEL npsxt column
00=%158 SO.PROW previous row
oo=3%18 S0.NRO¥ next row
Calt paramsters Return parameters

D1.W cotumn number (DO=10,11) D1 779
D2.W row number [bO=10) D2.L preserved

D3.%W timeout 03.L preserved
A0 channel ID A0 preserved
A1 Al ???

A2 A2 preserved

Error returns:

NC not complete
NO channel not open
OR position would be out of window

-ﬁ**%*%***ﬂ-%*****%*#%%-ii‘-ﬂ-li-il'*'ll'-N-l!'
%**%*-ﬂ-*****%**ﬁ-*-ﬁ-%**%ﬂ%**-ﬂ-%%

55 e e o ke e o e o e e o e e ol e e o e o o e e e e sl R e e Aok e R e ol el e e sk ek e e ok

In the case af an error return, the cursor position 1is not
changed. The curser position is the top left hand corner of the
next character rectangle referred to the top Lleft hand carner of
the window. These traps clear the pending newline in the window.

See the entry for SD.POS for details.

e 3 20 e o e o o 3o e o o ok o o e o ko ot e o o o o et e o R 0 o e o o o e o o e o e e s e el o e ol e

* ®
* TRAP #3 DO=$A or B *
% *
*® Returns the current window size and cursor position ¥
* *
® DO=%A SD.PXENQ enguiry in pixel coordinates ®
* DO=$B SD.CHENQ enquiry in character coordinates *
* .. _ - ®
* Call parameters Return parameters *
&% . *
* D1 D1 presarved *
* b2 D2 preserved *
® D3.W timeout D3.L preserved ®
* A0 channel ID A0 presarvad *
* A1 base of enquiry block A1 P77 *
* A2 A2 preserved *
* *
* Errar returns: *

Page 180

NC not complsate
NO channsl not apen

I L
* F

I
#

B B T L T T T T P T L PP P PR g e

The window size (X,Y)] and cursor pesiticn [X,Y) ere put intc a 4
word enguiry block. The top left hand cornar of the window is
cursor position C,0. These traps activate the newline if pending
in the window.

SD.SCALE
S80.5CRBT

SD.SCROL

i
#
i
3
*
#*
k1
#*
#*
H#
4
*
#
1t
4
#*
(..
%
#
3
n
1
1
3
1t
I
Ik
1
"
4+
i
#
i
¥
3+
b1
+
#
At
#
4
H
4
*
#
i
#*
#
#
»
b
it
1
it
4
4
4+

Recolour & window

Ceil parametars Return parameters
01 D1 7?77

Bz 02.L preserved
D3.¥ timeout 03.L preserved

A0 channsi ID Al preserved

Al pointer to colour list A1l ara'd

AZ A2 preserved
Erpar returns:

NC not compleie
NGO channel not open

o W R 3 B W X W ¥ F W W W W

L A TR I TR T | A S 1

oo e e 2 s e o e o e o e oot el o e e o o e e e o e o o o e o oo ot o e e e ok sl e e s e ST e e ol ke X

A window may be recoloured without changing the information in it.
This allows the same sort of effects as resetting the attributes
of an attribute based screen, but it is very much slower.

The colour List is 8 bytes Llong and should contain the naw colours
required for . each of the 8 colours in the window. Each of the new
colours must be in the range 0 to 7. Far 4 colour mode, only
bytes 0, 2, 4 and 6 nead to be filled in.

See the entry for SO.POINT for details.

See the entry for SD.SCROL for details.

e e s ol e o e e o 2 e o ot o o o o o o o e e o e o o e o o o o e e o oo e o e o e e e ek e e ek e

TRAP #3 DU0=%$18B to 1A

Scrolls part or all of a window

D0=3%18 S0.SCROL scroll all of window

D0=%19 S0.SCRTP scroll tap of window

DO0=81A SD.SCRBT seroll bottom of window
Cail parameters - Return parameters
D1.W distance to scrall D1 277

D2 D2.L preserved
D3.¥W timeout D3.L preserved

AQ channel ID AO preserved
Al A1l ??7?

A2 A2 preserved

Erraor returns:

LR R A A A R EEEEEED
E O B R I T R S S TRy

N€ not complets

8D .SCRTP

Page 108

3+

Part or ali of a window mey be scrolied; for partial scrolling
ths cursor is used as & refsrence. Thess traps cause pixels to be
transferred from one row to snother. Vecated rows of pixels are
filled with paper colour. A positive scroll distance implies that
the pixels in the window will be moved in a positive direction,
ig, downwardgs. The spece LsTt behind willi be fillad with papar

calour.

The division between the top of the window and ths bsttom cof the
window is the cursor line. The cursar line is included in neither
the top nor the bottom of the window. The curscr is not maoved.

See the entry for SD.SCROL for detafls.

SD.,SETIN

5D.SETMD

Page 103

3
1*

B S T LT P T T T e PR P g e

#*

TRAP #3

LR ()

flash

G0=32A i sf
i underscore

pO0=%28 }.SETU

Call paramsters Return parameters

B1.B O attribute off D1 777

eilse attribute on
D2 02.L preservesd
D3.W timeout D3.L preserved
A0 channel ID AD preserved
Al Al 797
A2 A2 preserved

Error returns:

NC not complete
NO channel not ocpen

S R R R N TN TR A S S TR Y

o4 W R 3 3 3 4 I o H o W W b 3

o Ao e Aol o I 0 a3 o o e o A e o o R AR e e e 0 ol o o R e o ik s 9 e o X e e o e o e e o o e e e e e o o kg ke o

See the entry for S50.SETPA faor details.

s e e o e s e e TR ol o e v ok el oo e e e e e o s e e ol s sk e e ol o ok R e ok skl e o

TRAP #3 DRO=%2C SD,SETMD

Sets the character writing or plotting mode

Call parameters AReturn parameters
D1.W mode 1 7?7
-1 ink is exclusive ored into the background
0 character background is strip colour
1 character background is transparent

0or1 plotting is in ink colour
b2 D2.L preserved
D3.W timeout D3.L preserved
A0 channel ID A0 preserved
AT A1 297
A2 A2 preserved

Error returns:

NC not complete
NO channel not open

LA S R G IR R N S R N TR VY
L I N R TR R A R A)

O T T T E T e T T L R P SN e T R e T LI T T e

SO.SETPA

§0.SETST

SD.SETSZ

T Lt L e e oy e O T T T T T T gy g
= #
*® TREAP #3 DO0O=3%Z7 to 28 =
P =
* Set scresn colours *
* ' =
* DO=827 SE.SETPA set papsr colour *
® DO=g28 SD.SETST set strip colour *
* DD=$28 SO.SETIN set ink colour *
%
= Call parsmeters Feturn parsmeters =
* &
* 01.8 colour D1 oreserved *
* pa D2 preserved ®
® D3.W timecut D3.L preserved *
* A0 channel ID A0 preserved *
= Al Al 77? *
* AZ A2 preserved *
* %
* Error returns: *
* %
* NC not complete #
® NO channel not open =
* ®
#

5 s e o s e o o e o el o e o o sl o o i e e sk ok sk e ol e e e sk e ek ke R e e e s

L1
3
3k

The screen driver uses three colours. There 1is the background

colour of a window: referred to as paper colour; this is the
colour which is used by the scroll, pan and clear operations.
There 1is the colour which is used by the character generator to
provide a highlighting background for individual characters or
words: referred to as strip colour. Finally, there is the colour
used far writing characters and drawing graphics: referred to as

ink colour.

See the entry for SD.SETPA for details.

e o o e o e 0 o 0o 23 e 2 30 o 8 23 o0 o e 0 s e ol i ot 0 Ao w0 o o ol 9 o 3 o 3 o e o o el o R e

* *
® TRAP #3 DO=%2D S5D.SETSZ *
* %
¥ Set character size and spacing *
%* : *
* Call parameters Return parameters *
* *
* D1.W character width/spacing D1 ??7? *
* -0 single width, B pixel spacing *
* 1. single width, B pixel spacing ®
* 2 double width, 12 pixel spacing *
* 3 double width, 16 pixel spacing *
* D2.W character height/spacing D2.L preserved *
* 0 single height, 10 pixel spacing *
* 1 double height, 20 pixel spacing *
* D3.W timeout D3.L preserved *
* AC0 channel ID A0 preserved *
* Al Al ?7? *
* A2 A2 preserved *

Page 105

E S =

* Error returns: *

% =

F NC not complete =

= NO chennel not open #

* £

e L T T e e R L T T T
The character generator supporis two widths end two heights of
charscter. In B colour mods, only the doubie width characters may
be used. In addition the spacing between characters is entirsly
flexible, but for simplicity of use only two sdditicnal spacings
are supported directly: these are 8 pixel and 18 pixel, in single
and double width respectivsly.

Calls with M=0 or 1 in B colour mode will operate as though =
call had been made with D1 equal to 2 or 3.

Page 108

S0,8ETUL See the entry for 80.SETFL for detaits.

S0.TAB Seg the entry for 23.P08 for detsils.

SO .WDEF
By L T T S Y T L T LT T Y S o Py
* =
® TRAP 7 00=5%0 S0 WOEF
* =
* Redefines & window ®
% =
® Czll perasmeters ' Return parametsrs *
*
* D4.B border colour D1 P27 =
*® D2.W border width D2.L preserved *
* D3.W timecut ' D3.L preserved ®
® A0 channel ID A0 preserved *
* A1 base of window block A1 727 *
® AR A2 preservaed *
* %
* Error returns: *
& E3
* NC not complete #
® NO channel not open *
* OR window does not fit on page *
* *

e 2 e 2 e b e R e e e]

This call redefines the shape or position of a window: the
contents are not moved or modified, but the cursor is repositioned
at the top left hand corner of the new window. The window bleck
is 4 words long and is the width, height, X origin and Y origin.

18.0 VECTOR

BP.LET

Page 107

ED ROUTINES

-

T T T L T T T T T T

Vector $110 BP.INIT

£ L
REOE)

ALl addresses psssed to this routine must be relative to AB.
BP.INIT is used tc Link in a iList of procedures and functicns to
be added tp the SuperBASIC name tsble. Once added, the functicns

can he called from SuperBASIC in the same way as the procedures
and functions built in to the ROM.

&n entry, A1 should point to a table in the following form:

word approximate number of procedures {see below]

for each procedure

{word pointer tg routine — here

(byte Length of name of procedure

(characters

word 0

word approximate number of functions (see below]

for sach function

{word pointer to routine — here
{byte Length of name of function
{characters
word 5]

The "approximate number" of procedures or functions 1is used to
reserve 1internal table space. It should be exactly equal to the

number of procedures

or functions unless the average Length of the procedure or
function names exceeds 7, in which case it should be:

{tatal number of characters + number of functions or procedures +
71/8

The pointers to the routines are relative to the address of the
pointer [e.g. DC.W ENTRY-*]

ALl registerg except Al are preserved by BP.INIT and no more than
48 bytes sre used on the user stack.

e s o e o 2 s o s e o e o o o e 0t 2 o o e e ot 0o o e o o ot o ok o e ol o e e s ool e o o e o ok o Sk e R

% *
* Vector $120 BP.LET *
% ®

S Lt T R R LT P R P P P e e P P P L T T P 2 T

ALl addresses passed to this routine must be relative to AG.

Page 108

BP.LET sssigns a value to be s&associested with an entry in the
SuperBASIC name table, On entry, {[AE,A2) should point to the name
table entry, and [AB,A1] should point te ths valus to bs =assigned
{see section 8.5 for deteils of the storsge formet for the various
types of datal. A1 and A3 shouid be on word boundaries.

The type of the entity to be assignsd (and hence its Llength] is
determined by the type in the name tabls sntry.

On exit, 00 is an error code, end D1, D2, 03, AD, AT and AR are

smashed.

CA.GTFP

CA,GTINT

CA.GTLIN

CA.BTSTR

Page 108

S S L ¢

AlL sddreseess passed to this routine must bs relative to AE.

BV.CHRIX is u
On entry, 1

pace on the arithmetic stack (A6,81}.
% s
03 are smashed.

required should ke in DO.L: DG %2

Since not only the stack but the whole SuperBASIC arsa may mave
during the cail, the arithmstic stack pointer should be saved in
BV_RIP[AB), whence it should be retrieved after the call has bheen

completed.

See the entry for CA.GTINT for details.

B L L L L L L T L L L Ll LT L gt

Vector $112 CA.GTINT
$114 CA.GTFP
$116 CA.GTSTR
$118 CA.GTLIN

o3 W H *
LI

ook d kol kgl Rk e R R ok R R ke R e R R R e o e

ALl addresses passed to these routines, must be relative to AB.

These routines are used to get the vatlues of actual parameters to
SuperBASIC procedures or functions onto the arithmetic stack.
Each routine assumes that all the parameters will Be of the same

type, as follows:

CA.GTINT 18-bit integer

CA,GTFP floating point

CA.GTSTR string

CA.GTLIN floating peint: convert to 32-bit long integer

On entry, {A5,A3) points to the name table entry for the firsg
parameter in the Llist, and (AG,AS]) points to the entry for the

Last.

The numbher of parameters fetched 1is returned in the Least
signifieant word of D3, The values themselves are returned in
order on~the arithmetic stack {A6,A1) with the first parameter at

the top (lowest address) of the stack.

These routines smash D1, D2, D4, D6, AD and AZ2. DO, and also the
condition codes, give the error code. The separator flags in the
name table entries are also smashed.

See the entry for CA.GTINT for details.

See the entry for CA.GTINT for details.

Page 110

CN,BTOIS8 See the entry for CON.DTOF for details,

)

&)
3

CN.BTOIL See the sntry CH.DTOF for detaits,

CN.BTOIW See the entry

-4
a
1

CN.DTCOF for detzils,

CN.DATE

CN.DAY

EN.DTOF

e e - e e e s e R L]
- . g
* Yector $EC CN.DATE get date and time =
® $EE CN.DAY get day of week *
* *
* Call parametars Return parametars =
= D1.L date {internal valuel D1 preserved *
* oeg D2 preserved *
* 83 D3 preserved *
= AQ AC pressryed *
* A% pointer to stack AT pointer toc stack *
® A2 A2 preserved *
® A3 A3 pressrved =
e *
L T T L g D T L LT T T T g

ALl addresses passsd tc these routines must be relative to AB.

These are itwo date conversion routines: CN.DATE returns the dats
in the form vyyyy mmm dd hh:mm:ss, CN.DAY returns a three letter
day of the week. The result is put on the A1 stack in string
format. At least 22 bytes are required by CN.DATE and at least 6
bytes by CN.DAY.

See the entry for CN.DATE for details

e it o e o o s ok 0 3 o ok o e ol ok e ol o o ek o e s o o s ks o e s e o o e o ok o e e ot o o e de e e e e o e e ok

x %
* Vector %100 CN.DTOQF floating point ®
® $102 CN.DOTOI integer =
* £3104 CN.BTOIB binary (byte} *

* 83106 CN.BTOIW binary (word) *

* §$108 CN.BTOIL binary {long) *

* A%10A CN.HTOIB hex [(byte) *

* &$10C CN.HTOIW hex (ward) *

* 8$10E CN.HTOIL hex (long] *

% *
* Call parameters Return paremeters *
%*
* b1 01 ?2?27? *®
* D2 p2 ?7? *
® K] D3 707 *
* D7 O or ptr to end buffer D7 preserved *
® A0 pointer to buffer A0 pointer to buffer *
* A1 . pointer to stack Al pointer to stack *
* AZ - A2 ??? *
* A3) A3 797 *
* : *
* Error retucns: *
*
* XP error in conversion {eg 1..0 as floating pt. ®
* or no digits or too many hex or binary digits] *
* #*

G dkge ek kok ke e ok e dok ke ko ok e e e ool e e ok e e R e

ALl addresses passed to these routines, must be relative to AS.

EN.DT0I

Page 112

Htilities marked & 2re non—functioning in V1.03 and earlisr,
acters in a buffer (poinsad
n 1

Thess routines convert from ASCII characis
ginted toc by A

to by AG! to a velue on ths stack {poin

The hex and binary conversions from ASCII tc number, aslways put =
teng word an ths A7 stack. At is set to point to the least
eignificant byte or less significant word for the byite and word

canversions. :

The decimal conversions may uss up toc abgut 30 bytes an the A1
stack.

If there igs an error then A0 and A1 are both unchangad.
Otherwise, on return, A1 points to the return value [fleoating

point, long word, word or bytel] and A0 points to the next
character in the buffer.

See the entry for CN.DTCF for details

EN.FTOD

CN.HTOIB
CN.HTOIL
CN.HTOIW
CN.ITOBB
CN.ITOBL
CN.ITOBW
CN.ITOD

CN.ITOHB
CN.ITOHL

CNL ITOHW

Page 113

T T T T e Y e L LT
® Vector $FD CN.FTOD floating point *
= $F2 CN.ITOD integer =
* 854 CN.ITOBB binary (byte} *
® $75 CN.ITOBW binary {word] *
* $F8 CN.ITDBL binary [long) #
= $FA CH.ITOHB hex (bytel *
* $FC CNLITOHW hax [word] ®
* SFE CN.ITCHL hex {leong] *
* =
& Cali parsmeters Beturn parameters =
* =
® (HH] 799 *
* 21 D1 77 ®
* D2 pz P?? *
* 03 B3 PP *
* A0 pointer to buffer A0 pointer to buffer *
* A1 pointer to stack A1 painter to stack *
¥ A2 A2 277 *
® A3 A3 727 *
* %
* *
e L T T T T g A R T T X TP T P e g e

All addresses passed te these routines must be relative to AB,

These routines convert & value on the stack (pointed to by A1}

a set of ASCII characters in a buffer (pointed to by AQ).

See
Ses
See
See
See
See
See
See
See

See

the entry
the entry
the entry
the entry
the entry
the entry
the entry
the entry
the-fntry

the entry

for CN.DTOF for details,

for

for

for

for

for

for

far

for

for

CN.

CN

CN

CN.

CN.

CN

CN

CN

CN.

OTOF
.DTOF
.FTOD
FTOD
FTOD
.FTCD
FTOD
.FTOD

FTOD

for

for

for

for

for

for

far

far

for

details.

details.

details.

details.

details.

details.

details.

details.

details.

to

IO NAME

Page 114

N T E T T T L T R Y L T T T T L T Ty rnanpagrey

3t
*
*
*
It
#
i
¥
3
bt
4
4

* Vsotor $122 I0.NAME ¥
® %
* Decodes a device name *
* *
= Call parameters Return parameters *
& ¥
-3 01 01 PE =
* Dz Ds 777 *
* 03 03 297 ®
* AJ pointer to name AD presesrved *
® A1 A4 7?7 ¥
* A2 A2 777 ®
* A3 pointer to parameters A3 preserved ®
¥ ’ ®
* Error returns: ®
*® %
* ERR.NF not recognised *
ERR.BN name recognised - but bad parameters =
P *

ettt Rt R e R E S T R At e e e e T e T

This routine parses a2 device name. Given a device name and a
description cof the syntax of the name teo be checked against and
for the possible parameters to be appended to 4%, the routine
determines whether the name 1is recognised, and extracts the
parameters if it 1is. The device name is formed using four
components:

Name ASCII characters, normally letters. Case is
ignored.

Separator Single ASCII character. Case is ignored.
Number Decimal number in the range 0 to 328767

Code One of 2 List of ASCII characters

Cn entry to the routine, AD must point to the device name (which
is in the usual Qdos string format}, A3 must point to an area of
memary which is sufficient to hold the decoded paramefter values,
and AB wmust point to the base of system variables. The device
description starts 6 bytes after the call, and is in the following
format:

ward number of characters in the device name to be checked
for

wards the characters of the device name to be checked for
word number of parameters

For each_parameter, one of the following options:
byte spaca, byte separator, word default value {(numeric

with separator)
word negative number, word default value {[numeric with

no separator]
word positive number of possible codes, bytes for the

ASCII codes

Note that all letters must be in upper case.

Page 115

For each numeric parsmeter value in the descriptien, the utiliy
will{ return either the value given in the device name, or the
default. For sach list of codes in the dascripticn the wutitity
wilt return the position of the code in the List, or zerso.

Examples:

The CON descripiiocn is:

DC.W 3,7CON? console

BC.Ww § five parameters

DC.w Tov,448,7 X',180 window size

De.wW vAY,32," X',165 window positicn

oC.W v_r,128 keyboard gueue length
Device name Parameters

CON 448 ,1806,0,0,128

CON_258 256,180,0,0,128

ecn__ B0 448 ,180,0,0,80

canalx12 448,180,0,12,128

con_PS6x64s64x128_20 256,64.64,128,20

I0.QEOF
I0.QIN
I10.00UT

I0.GSET

I0.07EST

Page 118

The SER descripticn is:

C.W &§,'5gR° RE232 serial device
ooy 4 four psramsters
pc.y —1,1 port number {default 1]
‘BC.W 4,'CEMS! parity [odd/even/mark/space)
DC.w 2,'IH’ ignore/use handshaking
oc.w 3,'RZC Raw/use CTRLZ/use CR
Device name Parameters
SER 1,0,0,0
SERE 1,1,8,0
serémiz 2,3,1,2

If the name is not matched, the routine returns immediately after

the call with
ERR.NMF in DO, If the name is matched but the additionatl

information is
incorrect, it returns 2 bytses after the call with ERR.BN in BO, If

a match is

found, it returns 4 bytes after the call with DO=0.
See the entry for IO0.QSET for details.

See the entry for I0.QSET for details.

See the entry for I0.QSET for details.

R LT T E T L L P T P F R L P e P P e e 2 e L P T e

Vector $DC I0.QSET set up a queue
$DE IC.QTEST test status of queue
SE0 I0.QIN put byte into gueue
$E2 I10.Q0UT extract byte from gueue
$E4 ID.CEGF put end of file marker into gueue

Call parameters Return parameters

D1 queue Length or data 01 data

D2 D2 preserved/free space

D3 D3 preserved

AD A0 preserved

A1 Al preserved

A2 pointer to queue A2 preserved

A3~ A3 modified by QIN, QOUT,
il QTEST, GSET

Error returns:

ERR.NC queue is full [QIN] or empty (QOUT, QTEST)
ERR.EF end of file reached (QOUT, GQTEST)

%#****%%*****%******%*
LU B T B T R T N R TS

Ot L L L L T e P e P T E e 2

See the entry for IO.QSET for details.

I0.GERG

Page 117

Ses the entry for I0.S5ERQ for details.

e e R R R RN R R RS R SR R R R Stk AR
* VYesctor $E8 I0.SERQ direct gueue handling *
* $EA I0.5ERIC general I0 handling ®
* *
* Czli paremzters Return parsmetses =
2 x
® B1 standard IGSS value b1 standard I0SS value *
* 02 standard IUSS vaiue D2 standard I0ES valus ®
* D3 standard I0SS valus D3 7?77 *
* AQ standard I0SS value AQ preserved *
® A1 standard I0S8S value A1 standard 10SS value %
* AZ A2 7972 *
* A3 A3 777 *
* =
* Error returns: *
% %
® ERR.BP undefined actiaon *
* or errors returned from supplied routines ®
® %

T Ll T g R e L T Tl

These routines must be called from supervisor maode, with AB
pointing- to the base of system varisbles. It may not be called
from a task which services an interrupt.

ID.SERQ is a direct queue handling routine. When the charnel
definition block is set up for simple serial I/0 then the 7th and
Bth Long words should be set to point to the queuss for input and
output respectively. If either 1input or output is prohibited,
then the corresponding painter should be zero.

I0.SERQ should be called with standard I0SS values in DO, D1, D2,
D3, A0 and A1.

For serial I/0 where the operations for byte input and ocutput are
not so simple, the routine I0.SERIC may be called. The call
instruction should be followed by three long words, these being

the entry addresses for

testing for pending input, [next byte in D1]
fetch byte, (byte in D1)
send byte. (byte in D1l

The use of absolute addresses for these may prove awkward; so the
entry to this routine is best included in the physical definition

block for the driver:

at $28{A3) or similar ar

3B7800ER MOVE.W $E8 A4 bC.L TEST

4E94 JSH (A4) bC.L FETCH
DC.L TEST DC.L SEND
DC.L FETCH 475 RTS
poc.L SEND

4E75 RTS

Page 118

invoked by ar
JER $28{A2} PEA $28{A3]
MOVE.W $E3,A4
JMP {A4]

Fcr the pcalls to the thrsg service rou
o

d b returned
as the srror code, 07 to D3 and At ¢ r

2
g volatils.

. ,
the hesdar

Both of thess calls treat acticns G, 1, 2, 3, 5 and 7,
s} efined actions

set and read actions a&and load and save: f
they return ERR.EP.

Page 119

MD .READ
R e LR L L s T
-3
Vector $124 MG .READ rezd & sector *
$128 MD.WRITE write & sectar *
128 MD.VERIN verify a secior *
$12A WMD.SECTR read a ssctor hesder =
Call parameters ’ Return parameters *
01 D1 file nr {resd/verify] *
oo D2 block nr [read/verifyl¥
D7 07 sector nr [rezd headrl®
AD AD 7?7 *
A1 pointer to start of bufr A1 pointer to end of bufr®
A2 AZ 777
A3 $1BG20 A3 $18020

Errocr retupns:

MD.WRITE none

MD.READ, MD.VERIN normal — failed
return+2 0K

MD .SECTR normat - bad medium
return+2 — bad sector header
return+d — OK

L R B T R IR R R R T TR TR AT 'Y

#OE O OH W o8& B A B R W N

ode sk de e e s ek e e e ok e e ke R e e R e R ek R e ke e ek e ey

The microdrive support routines are vectored to simplify the
writing of file recovery programs. On entry A3 must point tc the
microdrive control register, and the interrupts must be disabled.
ALl registers except A3 and AG are treated as volatile.

These routines do not set DO on return but have multiple returns.

Before calling MD.WRITE the stack pointer must point to 2 words:
the file number and the block number of the sector to bhe written,

These vectors point to $4000 bytes before the actual entry point.
The following code may be used:

MOVE.W aa.aaaa,An
JSR $4000({An)

MD . SECTR See the entry for MD,READ for details.
MD.VERIN See the.entry for MD.READ for details.

MD.WRITE See the entry for MD.AEAD for details.

MM.ALCHP

MM.ALLOC

#

B R 7 T L L L

= =
* Vecter SO0 MM_ALCHP ®
= =
* Allccate commcn heap ares ¥
% =
® Call paremeters Asturn parameters =
% =
D41.L space required D1.L space allocated *
* pe oz Y #
* 63 . D3 ?7? ®
» AD Al base of area allocated®
= A1 A1 ?T? ®
= A2 A2 227 *
A3 A3 P27 =
% %
* Error returns: *
*x *
* OM out of memory *
* %
B T Y T T T T Ll T T L T T g I

This routine must be called from supervisor mode, with AB pointing
to the base of system variables. It may not be called from a task

which services an interrupt.

The space requested must include room for the heap entry header,

~For simple heap entries this is 16 bytes long, for IDSS channels

this is 24 bytes lang.

The address of the heap area is the base of the area allocated,
not the base of the area which may be used (contrast with trap #1
D0=%$18 and $18}.

The area allocated is cleared to zero.

o33 o o e e e e e e o o e e oo e s o o e o e e el o e ol o o e ool e R e e ok s e ke ke ke

® ®
* VYector $D8 MM.ALLOC *
* *
* Allocates an area in a heap *
® %
* Call parameters -Return parameters *
¥ *®
* D1.L tength required B1.L Length allocated *
* pz2. pg 2?7 *
* D3 - D3 ??? *
* AD ptr to ptr to free space Al base of area allocated®
* A1 Al P99 *
* A2 A2 77?2 *
* A3 A3 PP *
¥ : *
* Error returns: *
* *
* OM no free space large enough *
* *

B T L Ll E s g E R P g e P OP P L P 1

Page 121

details of the heap allocatian mechanicm,

MM, LNKFR

MM .RECHP

Page 122

R Ak e N R A RN R AR kR R AR R Rk

EEERER

= %
* Vectoer $DA MM, LNKFR £
x %
= Links s free space (back] into a heap ®
o =
* Catl parameters Return parameters ®
o x
= 01.L length to link in 3y 777 ®
= o2 Dz 777 *
= 03 B3 777 ®
* AD bass of new space AQ 777 *
* Al ptr to ptr to free speace A1l 77? *
® A2 Az 279 *
® A3 A3 7?7 ®
% *
R Ly T T L T T e e 1.1

B T T T T L TR P A Y e TR o P T E T T PP g o ooy

* ®
* Vectar $C02 MM.RECHP *
x *
*# Releases common heap space *
® %
* Calt parameters Return parameters *
* *
* b1 b1 ?77 ®
* B2 be 797 ®
*® D3 pI 777 ®
* A0 base af ares to release A0 7?77 *
® A1 A1 77? #
® A2 A2 ?7? ®
® A3 A3 ?277? *
* %

B g T L e T T T T T T T T T T T P e e g O g e g gy

This routine must be called from supervisor mode, with AB pointing
to the base of system variables. It may not be called from a task
which services an interrupt. See entry for MM,ALCHP

Page 123

R N N A R R A R R R A A A A S e Rk
% %
* Vactor $11C BI.EXEC executes an ogperation %
® $11E RI,EXECS sxecutes a list of operations *
%
* Lali parameters . Reiurn perameters ®
& %
¥ J0.% operation (RI.EXEC! oo error cods #
01 D1 preservad *
® 52 D2 preserved =
03 U3 pressrved ®
* AD A0 pressrved ®
* A1 peinter to arith stack A1 updated ®
* A2 A2 preserved *
® A3 ptr to operation List A3 preserved *
* A4 ptr to base of var arsa A4 preserved *®
4 *
* Errar returns: ®
* *
* 0V arithmetic averflow *
* : *

B R e R R E e s S e Rt i R R L R S

AllL addresses passed to these routines must be relative to AB.

The arithmetic package is availshle for general use through two
vectors: the first executes a single operation; the second
executes a list of operations.

The package operates on floating peint numbers on a downward stack
pointed to by (AB,A1,L). It operstes on the top of the stack
{T0S) which is pointed to by (AB8,A1.L), and the next on stack
(NOS} at 6(A6,A1.L).

See section 8.5 for deteils of the floating point format.

The interpreter takes two types of operation codes. The first is
a true arithmetic coperation with an operation code between $02 and
$30 inclusive, the second is a negative code betwesen $FFFF and
$FF31 inclusive: this 1indicates a load or store operation of a
floating point number to or from the Llocation given by the
calcutation (AB.L+A4.l+opcode$FFFE]. If bit 0 of the opcode is
clear the operation is a load {A1 decremented by 6, creating a new
T0S], if it is set the cperation is a store (A1 incremented by 6,

NOS—->T0S}

For RI.EXEC the operation code should be passed as a word. For
RI.EXECB the operation codes are in a table of bytes pointed to by
A3. The tabla is terminated by a zero byte.

Naote: for the function EXP, D7 should be set to zero or an
arroneocus value will be returned.

The operation codes for the interpreter are as follows:

COobE function change to A1

Page 124

302 BRI NINT nearest inteéger to TOS +4
$04 RI,INT truncate TOS5 to integer +4
$08 RI,NLINT nearest lLong integer to T0S +2
$08 RI.FLODAT integer TGS te flaating point -4
$0A RI,ADD add TOS to NOS +8
$0C RI.SUB subtract TOS from NOS +8
$0E RI.MULT multiply TOS by NOS +8
$10 RI.DIV divide TOS intc NOS +6
$42 RI.ABS positive value of TGS &
814 RI.NEG negate TOS O
$18 RI.DUP duplicste TOS -6
58 RI.COB casinsa 1
$1A RI,SIN gine }
$1C RI.TAN tangent }
$1E RI.COT cotangent]
$20 RI.ASIN arcsine]
$22 RI.ACOS arccosine] change TOS
only
$24 RI,ATAN arctangens } A1 unchanged
$26 RI.ACOT arccotangent |}
$28 RI,SART square root |
$24 RI,LN natural Llogarithm }
$2C RI.LOG1C logarithm to base 10]
$2E RI.BP exponential]
$30 RIL.POWFP NOS to the power of TOS +6
UT.CoM See the entry for UT.WINDW for details
UT.CSTR
Aok s e e s e R R e R e e R sk e R e R R K
* %
* Vector $EE UT.CSTR ¥
* #*
® Compares two strings *
* ¥
* Call parametars Return parameters *
* : *
* D0.B comparison type DO.L -1, 0 or +1 *
® 01 D1 preserved ®
* D2 D2 preserved *
* D3 D3 preserved *
* A0 base of string 0 wrt AG AD preserved *
* A1 base af string 1 wrt AE A1l praservad *
= A2 A2 preserved *
* A3 A3 preserved *
............ * AB base address register AB preserved ®
* *
e e L LT L e e e P P P e e e s L
All addresses passed to this routine must be relative to AS,
DC (and the status register] is set negative if the string at
[AG,A0) is less than the string at [A5,A1) etc.
UT.ERRO
UT.ERR .
Rk KR R R A R KRR R E R R TR R R R R R R Rk kA
* %
*

* Vector $CA UT.ERR0O write error msssage to channel 0

Page 125

$CC UT.ERR write error message ta given channsl ¥

% x
= Catl parameters Heturn parameters =
*= F
= 00.1 errcr code DO.t preserved *
= 1 b1 preserved *
= B2 b2 prassrved *
= o3 B3 pressrved =
® AQ chennsi ID {UT.ERR only) AC preserved #
A7 A1 sreserved *
= A2 A2 presserved =
* A3 A3 praservead ®
2 *
=

Bt S 3 E T AL 2 T R et e e 2 R R i 22 ok

These routines must be called from user mode.

These routinaes exist fer writing simple messages to a channel.
They are basic error message handlers which write a standard ar
device driver suppliasd error message to either the command channel

0, ar elss to a defined channel.

UT.LINK

Page 126

S e e L L s s e L L P Ty T
% ®
¥ Vegctor 02 UT.LINK Link an item into a Llist *
= 504 UT.UNLNK uniink an item from a list *
% %
= Call parzmeters Aeturn parameters ®
® B1 B1 preserved =
* D2 D2 preserveg *
® 02 03 preserved ®
* AD base of item [unllinked A preserved =
i 1 pointer to previcus item AT updated *
® A2 A2 preserved *®
* A3 A3 preserved ®
* *

ke 5 3 e ot 2 3t ol s o o o 0 e ok e e 2 e o ok o o s ok o o e g o e ol e e e ok ook e e o sk ok ke o o Ao e o A o e s

These two routines are provided for handling linked Lists.

These routines are passed the base address of the item to be
Linked or untinked, and 2 pointser which points to either the
pointer to the first item in the list, or te an item in the list,.

When an item is linked in, it will be linked in at the start of
the list, or, 1if the pointer was to an item in the list, after

that jtem.

When an item is removed, the pointer may point to the pointer to
the first ftem in the list, or to any item in the list before the
item to be removed.

When starting a new List, the painter to the first item 1in the
lList must be zera.

Each item in the list must have 4 bytes reserved at the start for
the link pointer.

UT.MINT

UT.MTEXT

Page 127

L LT L T L P T P e P L P P e o rs T E
b3 b
= Vector $CE UT.MINT *
- %
= Converts an integer to ASCII adds s space and sands ¥
* it to the defined channel ®
= =
* Call parasmeters Return paremeters =
=
* D1.W integer value 51 ¥?? *
= D2 o2 777 -
* D3 pa ?77 ®
= A0 channel 1D AD pressrved =
M A1 279 *
® A2 AZ preserved *
* A3 A3 preserved *
* e
® Error returns: *
% *
* ALL the usual I0 =
% ®

B R T T T T T g T T LT T

This routine gught usually be calied from user mode.

S e e e o o e e e e ok ol e At ek sk skl ke ok e ek e sk ek o Rk ke dokok ok R ok ook Rk e %

Error returns;

ALl the usual IO

*
* Vector $00 UT.MTEXT *
] %
* Sends a message to a channel ®
* *
* Call parameters Return parameters *®
* *
* b1 D1 27?7 *
* D2 g 227 ¥
* D3 03 ?7? ®
® A0 channel ID A0 preserved *
* A1 base of message Al ?77? *
* A2 A2 preserved *
* A3 A3 preserved *
#
& #
* *
% *
*

S o e 3 38 e o 303 o e ol e o e e e o e oo o 3o o o o e e ol o o e s o o e e o o ok ke ook ok e ook ot o

This routine ought usually be called from user mode.

The above routines {UT.MINT and UT.MTEXT) sre provided to write
parts of more complex messages to a defined channel.

The message is in the form of a text string: number of characters
{word] followed by the characters 1in ASCII. If & new ling is
required at the end of the message, this should be included in the
messaga. If the channel 1is 0 then D3 will be returned O,
otherwise D3 will be returned —1. In version V1.03 and earlier,

Pags 128

testad sc the condition
y interrupt

gse routines
with A0=0. If the command channsl i L sttempt to
use channel 1. This operation is not recommendad, but it does

DO is sst to the error return but i
codes will not be correct. As & sp

seem to workl

UT.SCR

UT.UNLNK

Page 128

Se2 the entry for UT.WINDW for details.

See the enzry for UT.LIMK for details.

UT . WINDY

O Tl T T L L T P T T Y T g
® %
* Vector 304 UT.WINDW set up 2 window using a suppitied name®
® 3C8 UT.CGN set up console window *
* sC8 UT.SCR set up screen window *
* %
x Call parameters Return parameters ®
% %
* 01 1 P77 *
® B2 De 7?? ®
* b3 D3 77?7 *
* A0 pir to name [WINDW onlyl AQD channel ID *
* A1 ptr to parameter block A1 P97 *
= A2 A2 P77 ®
* A3 A3 277 ®
% ¥
* Error returns: *
% *
* BN bad device name (WINDW onlyl *
* 0M out of memory *
* NO out af channels *
® OR window is off-screen &
* %

skt 5 3 2 o o o o i o e o o sl ok o oo e e o e ek 905 e o i 4 o i e ol o ot o ke e e e o e o il sl s e O e o

The above three routines, which must be called in user made, set
up console or screen windows using a parameter List which follows
the call statement. In the first case, the window is opened using
a name which has been supplied, a block of parameters defining the
border, and the paper, strip and ink colours. The window 1is set

up and cleared for use,

The second and third routines define the window using an
additional block of four words.

The parameter block is as follows:

$00 border colour [(byte}

$01 border width (byte)

$02 paper/strip colour {byte)

$03 ink colour {bytel

$04 width (word))

8086 - height (word)] not required for UT.WINDW
$08 - X origin [word]l]

504 . Y origin {word))

Page 130

17 .0 QD0S SYSTEM STANGARDS

in order toc meke best use of the third—party work/both
currentiy going o©on on the GL a2 number r
produced.

1. Floppy dise standard-This ers the physical layout, f{ormatting,
irectory ssructure and disk handling of floppy disks under {Qdos.

2. Reloscatshle objsct

ile standard-io allow the linking of
compiiad modules, potentiall

s
ly written in different languages.

These standards sre available on appticstion ¢to &Sinclair Research at the
address in the introduction.

Page 131

18.0 QDG5S KEYS

The fottcwfug segcticns coniain keys Tor various Teatures of UQdos. These kays
provide a definition for several of the dats structures within Qdos

18.1 Errse Ksys

The following keys indicate grror messages already defined in the system. A
positive error code is taken s sn address of a us:?—eupp‘ieﬁ errar message.

Sse the Concepts manual for a fuller descripticn
the procedures built into SuperBABIC,

used by

ERR.NC
ERR.NJ
ERR.OM
ERR.OR
ERR.BQ
ERR.NO
ERR.NF
ERR.EX
ERR.IU
ERR.EF
ERR.DF
ERR. BN
ERR.TE
ERR.FF
ERR.BP
ERR.FE
ERR ., XP
ERR.QV
ERR.NI
ERR.RO
ERR.HL

of the way in

operation nat complete
not a valid Jeb.

out of memory

out of range

buffer overflow
channel not open

file or device not found
file aslready exists
file or device in use
end of file

drive full

bad device name
transmission error
format failed

bad parameter

file error

errar in expression
arithmetic overflow
not implemented [yet!}
read only

-21 bad line (syntax error in BASIC]

18.2 System Variables

The following Llist gives the offset of each system variable from the base of
the system variables {whose position can be found using the MT.INF trapl,
together with the Llength of the variabls.

Zfooe

SV_IDENT $00 word identification word

The following var1abies are the pointers which define the current state of the
(Qdos memory fmap.

SV_CHEAP 504 long base of common heap area

SV_CHPFR $08 long first free space in common heap area

SV_FREE $0C long base of free areg = | 28

SV_BASIC $10 tong base of basic area = . 280ip

SV_THNSP $14 tong base of transient program area

SV_TRNFR $18 long first free space in transient program area ~
SV_RESPR $1C tong base of resident procedure area -
SV_RAMT $20 long top of ram {+1}

SV_RAND - SPE word random number

Page 132

SV _POLLM 330 word count of poll interupts missed

SV_TVMCD $32 byte 0 if not TV displsy

SV_SCRST 8332 byte screen status (0 = active]

SY_MCSTA 834 byte current veiue of display control register
SV_PCINT $35 byte current value of intsrrupt controi/mask rsgistsr
SV_NETNR 37 byte netwoerk station number

ct

The following system varisbles ars pointers to the List of tasks and drivers.

SY_IZLST §38 long pointer to list of interrupt 2 drivers
8v_FLIST €3C tong pointer to list of pallad tasks

SV_SHLST $40 long pointer to list of scheduler tasks

SV_DRLST $44 tang pointer to Llist of device drivers

SV_DDLST $48 Llong pointer to List of directory device drivers
SV_KEYG $4C Long pointer to a keybuoard gqueue

SV_TRAPYV $50 leng pointer to the trap redirection table

The following system variables are pointers to the resource management tables.
The slave block tables have B byte entries, whilst the others have 4 byte
entries.

SV_BTPNT $54 Llong pointer to most recent slave block entry
SV_BTBAS $58 Long pointer to base of slave block tahle
SV_BTTOP $5C Long pointer to top of slave block tsble
SV_JBTAG 360 ward current value of Job tag

SV_JBMAX $62 word highest current Job number

SV_.IBPNT $64 long pointer to current Job table entry
SV_JBBAS 368 Long pointer to base of Job table
8V_JBTOP $6C Long pointer to top of Jab table

8V_CHTAG §70 word current value of channel tag
SV_CHMAX $72 word highest current channel number
SV_CHPNT 74 Long pointer to last channel checked
SV_CHBAS $78 long pointer to base of channal table
Sv_CHTOP 37C tong pointer to tocp of channel table

The following variables contain information about how to treat the keyboard,
and about other aspects of the IPC and serial port communications. SV_CAPS,

SV_ARDEL, SV_ARFRQ and SV _CSUB can safely be poked.

SV_CAPS $88 word caps Llock h2976-

SV_ARBUF $8A word autorepeat buffer

SV_ARDEL $BC word autgorepeat delay

SV_ARFRO $BE word autorepeat 1/freq

SV_ARCNT $90 word autorepeat count

Sv_CocH $92 word keyboard change queue character code
SV_SOUND $96 word . sound status

SV_SERIC 3588 long receive channel 1 gqueue address
SV_SERZ2C $8C Long recaive channel 2 queue address
Sv_TMODE $A0 byte ZX8302 transmit mode {includes baudrate]
Sv_CsuB $A2 Lang subroutine to jump to on CARSLOCK
SV_TIMO $AB word timeout for switching transmit mode
SV_TIMoy A8 word value of switching timeout {two characters]
SV_FSTAT $AA word flashing cursor status

SV_MDRUN $SEE byte which drive is running?

Page 133

SY_MDCNT SEF byte microdrive run—up run—down counter
SV_MDDID sF0 B bytes drive ID¥4 of each micradrive
SY_MDSTA S8 8 bytes status 0= ng pendirg ops

SV_FEOEF 2130 18*long pointars to file system physical definition
SV_FSLST 35140 lLong pointer to list of fiis channel definitions
The following area, beiwesn $180 and 3480 s reserved for the supervisocr
stack, There is no explicit stack protsction in the code, a2lthough the stack

shauid beg of sufiicient size for most normsl purposss.

18.8 SuperBASIC Variables

Note that the system variable SV_BASIC points to the bottom of the SuperBASIC
area, where its job header, which is $88 bytes long, is loceted. The value af
AB used during the interpreter points to the address immediately above the job
header, which contains a set of varisbles formatted as shown in this table.

The first part of the area holds the pointers to the various areas of memory
used by the interpreter: 1t defines the partitioning of SuperBASIC's own area
of memcry.

BV_START G start cf pointers

BV _BFBAS $00 tong buffer base

BY_BFP $04 Lang buffer running pointer
BV_TKBAS €08 lang token List

BV_TKP $ac Long

BV_PFBAS $10 tong program file

BV_PFP $14 long

BV_NTBAS $18 lang name table

BV_NTP $1C long

BYV_NLBAS $20 Long name List

BV_NLP $24 long

BV_VVBAS 528 long variablte values

BV_VVP §2C long

BV_CHBAS $30 long channel table

BV_CHP 534 Long

BV_RTBAS $3B tong return table

BV_RTP $3C long

BY_LNBAS $40 Long Line number table

BV_LNP $44 long

BV_CHANGE $48 change of direction marker
BY_BTP $48 tong backtrack stack during parsing
BV_B8TBAS - $4C laong _

BV_TGP $50 long temparary graph stack during parsing
BV_TGBAS %54 long .

BV_RIP $58 long arithmetic stack

BV_RIBAS $5C Long

BY_SSP $60 lang system stack (real onel]

BV_SSBAS 564 Long
BV_ENDPT $64 end of peointers

BV_LINUM $68 word current Line number
BV_LENGTH $8A word current length

Page 134

BY_STMNT 360 byte current statement on tine
BYV_CONT §50 byte continue [SBO) ¢r stop (0} processing
BV_INLIN 38E byte proccessing in-line clauss or not
laop (4], other [$FF}, not (0]
3V_SING $6F byts single tine exscution on [$FF] or off (0]
- BV_INDEX §70 word name table row of last inling loop index read
BY_VVFREE 872 lang first fres space in variasbls value table
BY SSSAV $78 long gaved sp for cut/mem to go back to
gep of B
BV_RAND $ED leng random number
8Y_C0OMCH $84 long command channel
BYV_NXLIN $88 word which tine number to start after
BV_NXSTM $BA byte which statement to start after
BV_COMLN $BB byte command line saved [$FF} or not (0)
BY _STGPN $8C word which stop number set
BV_EDIT $8E byte program has been edited ($FF} or not {C]
BV_BRK $8F byte there has been a break (0] or not ($80)
BV_UNRVL $80 byte need to unravel ($FF) ar not (0]
BY_CNSTM $91 byte statement to CONTINUE from
BV_CNLNO 82 word Line to CONTINUE from
BV _DALNO 584 wonrd current DATA Lline number
BY_DASTM %86 byte current DATA statement number
BY_DAITM $87 byte next DATA item to read
BV_CNIND $88 ward inline loop index to CONTINUE with
BY_CNINL $8A byte intine Loap fleg for CONTINUE
BY_LSANY $8B byte whether checking List ($FF] or not (O]
BV_LSBEF $8¢ word - invisible top line
BV_| SBAS $8E word bottom Line in window
BV_LSAFT $A0 word jnvisible bottom line
BV_LENLN $A2 word length of window Lline
BV_MAXLN $A4 word max nr of window lines
The 2 words immediately following this will be
overwritten on changing lenitn and maxln
BY_TOTLN $AB word nr of window lines so far
gap of 2
BV_AUTO $AA byte whether AUTO/EDIT on {$FF) or off (0]
BV_PRINT $AB byte print from prtek ($FF] or Leave in buffer (0]
BV_EDLIN $AC word tine number to edit next
BV_EDINC SAE word increment on edit range
BV_TKPOS $B0 Lang pos of A4 in tklist on entry to PROC
BY_PTEMP $B4 tong - temp pointer for GG_PROC
BY_UNDO $B8 byte undo rt stack IMMEDIATELY then redo procedure
BV_ARROW $B3 byte down ($FF) or up (01) or no (BO) arrow
BV_LSFIL $BA ward fitl window when relisting at least to here
BV _WRLNO $BC word when error line number
BY_WRSTM $BE byte when error statement

BV_WRINL $BF byte when error intine (SFF) or not (0)

BV_WHERA

$C0

byte

Lon
wor

00
[(]

word
long

processing when 2rror($80] or not (0]

last error code
tine number of last error

number of watched [WHEN] variables
bass of WHEN varisble tsble wrt VVYBAS

tep of BV area

Page 135

Page 136

18.4 Offsets On BASIC Chsznpel Cefinitions

T

The following section gives the faormat cf an entry in the SuperBASIC channel
tablse. These sniries can bs monitorsd or modifisd by user—dsfined Super8ASIC
procedures wnich need to heve a chennel &t tached using s '#n' caonstruct.

CH.ID 800 channel 1

CH.CCPRY 804 {lost curpent curscr pasition, v

CH.COPX 20A float current cursor pgsiticon, x

CH.ANGLE $10 flast turtle angle

CH.PEN 18 byte pen status [up or downl

CH.CHFOS $20 word character positicon on line

CH.WIDTH 522 werd width of line in characters

CH.SPARE 824 ..8pare, .

CH.LENCH $28 tength of a channel definiticn block

18.5 Job Header And Save Area Definitions

The lLacation of the job table can be found by looking at the system variables
SV_JBBAS and B8Y_.JBTGP. Each entry in the table is a longword pointing to a
block of $68 bytes in the format given here.

JB_LEN* 500 Long total Llength of job area
JB_START $04 lang start address on activation {usually €)
JB_OWNER $08 long job ID of the owner of this job
JB_HOLD 500 loang ptr to byte to be cleared when job released
JB_TAG* $10 werd tag for this job, allocated by MT.CJOB
JB_PRIOR $12 byte current accumulated priority:

set to zerg when the job is exescuting, incramented
on each

scheduler call if the job is active but not
executing
JB_PRINC %13 byte priority increment (the actual priority of the job!

set to zero if the job is jnactive
SuperBASIC activates jobs at priority $20
JB_STAT® $14 word job status
8 => not suspended
>0 => number of frame times to release
~1 => suspended
-2 => waiting for another Job to finish

JB_RELAS $16 byte MSB set if next trap #2 or #3 has addressing
retative to A6 '

JB_WFLAG $17 byte set if there is a Job waiting on completion of this
one

JB_WJOB $18 long Job ID of waiting Jab

JB_TRAPV $1C 1iong pointer to trap redirection vectors

JB_DO $20 - save offset of DO

JB_D1 24 -+ save offset of D1

JB_D2 $28 save aoffset of D2

JB8_D3 o %2C save offset of D3

JB D4 $30 save offset of D4

JB_D5 $34 save offset of D5

JB_D6 $38 save offset of DB

JB_D?7 $3C save offset of 07

JB_AO $40 save offset of AD

JB_A1 $44 save offset of Al

Page 137

JB_AZ 548 ssve offse} of A2

JB_AJ 540 ssve offset of A3

JB_A4 3540 save offset of Ad

JB_AS $E4 save offset cf A

JB_AB 558 ssve offset of AS

JB_A7 $5C save 0ffset of A7

J8_USP $5C sgye offset of USP
JB_SR 60 ssve affset of ER

JB_PC - 882 save offset of PC

J48_END 568

g at [{8V_JBBAS}+4%<Job_ID>.%], and
the most significant w ust match the tag hsld 2% 10H on from
this address {otherwises that job nc longar exists}. A negative <Job-ID>
implies that the job no longer exists, as does a valus of <Job-ID>.W which is
greater than the length of the job table held in SV_JBMAX,

Thus the job identifisd by <Job-I
grd of

Entries marked by * should not be modified. Other entries may be medified by
a trap, or may be changed directly with cautiocn.

18.6 Memory Biock Table Definiticns

The followin

BT_STAT
8T_PRIOR
BT SECTR
BT_FILNR
BT_BLOCK
BT_END

The most significant 4 hits of ths ststus byte cont
physical device block SV_FSDEF, ths least signifi

BT.UNAV
BT.EMPTY
BT.RREQ
BT.TRUE
BT.AVER
BT.UPDT

b
]

H € &N €A I 4h
DOMmOoD o
oSO

e

eys

byte
byte
word
word
ward

000000008
0000000618
0oo01004 8
600000118
£8001011B
800001118

Status code masks:

BT.ACTN
BT.INUSE

06011008
0ooo11108

Bits of status codes:

BT..FILE
BT..ACCS
BT..WREQ
BT..ROVRH

0
1
2
3

define the format of the start ©

-4
m

slave block,

drive ID / statug byis — se= below
block pricrity
sgctor number [micredrive®E]

file number {microdrivel] logicatl
bleck number (microdrivel] locationm
tain the pointer
ficant are the stati

block is unavailahle tc file system

block is empty

block reguired to be resd from microdrive
block is a true representation of file
block is awaiting verify

bltock is updated

check for read aor write request
check if a file block in use

if a fite block

if contents may be accessed

if block required to be written

if block required to be read / verified

- oed = o

Page 138

18.7 GChannel

FPage 138

The positian of s channsel definiticn block carresponding to = given channal ID
can bz found using a similer mathod to that used for Tinding the block for &
Jab describsd in section 3.1 The relevant system varizables srs SY_THEAS and
SY_CHMAX
Channal definition header for azll channsls:
CH_LEN 200 Long length of definition block
CH_DRIVRE 504 lang address of drivar
CH_OWNER S08 Lang owner jocb
CH_RFLAG 300 Long address to bs set when space relessed
CH_TAG $0 word channel tag
CH_STAT $12 byte status - 0 OK, negative waiting
-1 A1 ahs, $80 AT rel A8
CH_ACTN $13 byte stored action for waiting jab
CH_JOBWT $14 leng ID of jeb waiting on ID
CH__EMD 18

Extended channel definitio

CH_GIN $18 iong
CH_GouT $1C Long
CH_GEND $20

Device driver header:

CH_NEXT $00 long
CH_INOUT 3%G4 Long
CH_OPEN $08 tong
CH_CLOSE s0C€ Long
The following are for dire
CH_SLAVE 310 long
CH_RENAM $14 long
CH_FORMT 81C Long
CH_DFLEN $20 long
CH_DRNAM $24 2+n bytes

18.8 File System Definiti

File system channel defini

FS_NEXT $18 tong
FS_ACCES $1C byte
FS_DRIVE $1D byte
FS_FILNR $1E word
FS_NBLOK $20 word
FS_NBYTE 322 word
FS_EBLOK $24 word
FS_EBYTE $e8 ward
FS_CBLOK s28 Long
FS_UPDT $2C byte

n for plain serial queues:

pointer to input gqueue (or zero)
pointer to output queue (or zero)

pointer to next driver
entry for input and output
entry for apen

entry for close

ctory devices (file system) only:

for staving blocks
reserved for rename

entry
entry

entry for format medium
Length of physical definition block
drive name

on Blocks
tion block format:

link to next file system channel

access made

drive ID

file number

block containing next byte

next byte in block

end of file [block]

end of file (byte in block]

pointer to table for current slave block
set if file is updated

Page 140

FS_FNAME 838 name 2+38 file name
FS_SPARE §58 72 bytes
FS_END BAD

The common part of & physical dafiniticn bleck

S.NMLEN 524 max length of fiie nams

FS . HDLEN $40 length of file system hsadsr
FE_DAIVRE %10 Long pointer to driver

FE_DRIVN 314 hbyie drive number

FS_MNAME 316 word+10 bytes medium name
F8_FILEE 3822 byte number of files open

Page 14

15.8 Screen Driver Data Bleck Definition

This is the formst of the block handed to a scrsen driver operation.
S0_XMIN $18 word window top LHS

SCYMIN $1A word

5 XBIZE $1C word window sizs

80 _YSIZE $1E word

E0_BORWD 220 word border width

50_AP0S 322 word cursar position

SD_YPOS $24 werd

5D_XINC L word cursar incremsnt

SD_YINC $28 word

SO _FONT $2A 2%long font addresses

SD_S5CHB 832 long base address of screen

SD_PMASK $36 long paper colour mesk

SD_SMASK $3A long strip colour mask

SD_TMASK $3E long ink colour mask

Sb_CATTR $42 byte character attributes

S0_CURF $43 hyte cursor flag O=suppressed, >O=visible
S0_PCOLR $44 byte paper colour byte

SD_SCOLR $45 byte strip colour byte

S0_ICOLR $46 byte ink colour byte

SD_BCOLR $47 hbyte border colour byte

SD_NLSTA $48 byte new line status (>0 implicit, <0 explicit]
SD_FMGD $43 byte fill mode (0=off, 1=on)

SD_YORG §4A float graphics window y—aorigin

SD_XORG $50 float graphics window x-origin

SD_SCAL $56 float graphics scale factor

SG_FBUF $5C Llong pointer to fill buffer

SD_FUSE $60 long pointer to user defined fill vectors
SD_LINEL 564 word line length in bytes

SD_END $68

18.10 Gueue Header Definitions

The following is the format of the header of a8 queue manipulated using the
system's built—in gueue handling routines.

@ _EOFF $00 bit * end of file flag [MSbit]

Q. _NEXXTQ $00 leng link tc next gqueue

8_END $04 Long pointer to end of gueue

G_NEXTIN $08 Llong pointer to next location to put byte in
Q_NXTOUT 50C Long pointer to next location to take byte from

G_QUEUE 310 start of queue

18.11

RI.TERM
RI.NINT
HI.INT
RI.NLINT
RI.FLOAT
RI.ABD
RI.SUB
RI.MULT
RI.DIV
RI.ABS
RI.NEG
RI.DUP
RI.COS
RI.SIN
AI.TAN
RI.COT
AI.ASIN
RI.ACGS
RI.ATAN
RI.ACOT
RI.SQART
RI.LN
RI.LOG10
RI.BXP
RI.POWFP
RI.MAXOP
RI.LOAD
HI.STORE

18.12

Arithsetic Inte

Page 142

rpreter Opsraticn Codes

ing are tha codes for the operations which can os performed on
the vectared routines which access ths arithmetic interpreter
Elsi) terminator byte

802 rearsst intsger to top of stack [tes)
504 truncats tos to intsger

808 nearsst lLong integer o Ges

03 intsger tos to floating point

5CA add tos to next on stzck {nos]

50C subtract ftos from nos

$0E multiply tos by nes

$10 divide tos intc nocs

$12 positive value of tos

$14 negate tos

$16 duplicate tos

$18 cosinag

$1A sine

$1C tangent

$1E cotangent

$20 arcsine

22 arccosine

§24 arctangent

$26 arccotangent

§e8 square root

$2A natural log

$2C logarithm to base 10

$2E exponential

$30 nos to power of tos

$30 highest valid opcode

$00 Lload operation bit

301 stare operation bit

IPC Link Commands

These can be used with the MT.IPCOM trap.

RSET_CMD
STAT_CMD
0PS1_CMD
0PS2_CMD
CLS1_CMD
CLS2_CMD
ADS1_CMD
RDS2_CMD
RDKB_CMD
KEDA_CMD
INSO_CMD
KISO_CMD
MDRS_CMD
BAUD_CMD
RAND_CMD
TEST_CMD

DLHNDIA_ON SO

system reset

report input status
open RS232 channel
cpen RS8232 channel
close RS232 channel
close RS232 channel
read RS232 channel
read RS232 channel
read keyboard
keyboard direct read
initiate sound process

kilt sound process

microdrive reduced sens1t1v1ty
change baud rate

random number generator

test

18.13 Hardware Keys

Page 143

The following are the sddresses of the registers within the QL hardwere
FC_CLOCK 18680 real time clock in seconds [(long word)
PC_TCTRL $18002 transmit control

PC_MCTRL 18020 microdrive control/status and IPC status
PC_IPCRD 81802 IPC read is the same

PC_IPCWR $1B003 IPC write

FC_INTR 318021 interrupt control/status

PC_TDATA $18022 ransmit data

FC_TRAK1 398022 microdrive read track 1

PC_TRAK2 $1BOE3 microdrive read track 2

MC_STAT $180863 display caontrol

The following is the format of the interrupt register.

FC.INTRG
PC.INTRI
FC.INTRT
PC.INTRF
PC.INTRE
PC.MASKG
PC.MASKI
PC . MASKT

801

$02
504
508
$10
320
$40
$80

gap interrupt
interface interrupt
transmit interrupt
frame interrupt
external interrupt
gap mask

interface mask
transmit mask

The follewing is the format of the transmit control register.

PC. .SERN
PC..SERB
PC..DIRO

PE.BMASK
PC.NOTMD
PC.MDVMD
PC.NETMD

The following is the foermat of the microdrive contral/status register.

PC..SEL

PC..SCLK
PC..WRIT
PC..ERAS

PC..TXFL
PC. .RXRD
PC..GAP

PC..DTR1
PC..CTS2

3
4
7
000001118
111001118

00160008
000110008

0
1
2
3

o Capy -

Write masks:

PE.READ

PC.SELEC
PC.DESEL
PC.ERASE
PC.WRITE

80108
60118
00108
10108
11108

The‘foLLowing is the

serial port numher
O=serial IO
direct output

baud rate mask
all bits except mode control

microdrive mode
network mode

microdrive select bit
microdrive select clock bit
microdrive write

microdrive erase

microdrive Xmit buffer full
microdrive read buffer ready
gap

DTR on port 1

CTS on port 2

read [ar idle] microdrive
select bit set

select bit not set

erase on / write off
erase and write

format of the display control register.

Page 144

MC..BLNK 1 bit 1 blanks display
MG, . M2BEB 3 Bit 2 sets 256 mode
MC . .SCRN 7 bit 7 sets scresn base

18.14 Trap Keys

Trnis secticn gives a summary aof all of the Gdes traps, together
access keys passed in OO. ALt keys are in hex.
18.14.1 Trap 1 Keys (manager Traps] -

MT . INF $00 gst system information

MT.CJOB $07 create a job

MT . JINF 502 get information on job

MT .RJOB 304 remove a Jjob

MT .FRJGB 805 force remcve a job

MT.FREE 506 find out how much free spacae there is
MT.TRAPV 307 set pointer to trap redirection vectors
MT.S5USJB $08 suspend a job

MT.RELJB $08 release a job

MT.ACTIV $0A activate a job

MT.PRIOR $0B set a job priority

MT . ALLOC $0C allocate a bit of a heap

MT.LNKFR $0D release a bit of a heap

MT.ALHRES $0E allacate resident procedure area
MT .RERES . 3O0F release resident procedure area

MT .DMODE $10 set display mode

MT.IPCOM $11 send IPC command

MT . BAUD $12 set baud rate

MT .RCLEK $13 read clock

MT.BCLCK $14 set clock

MT.ACLCK $15 adjust clock

MT.ALBAS $16 allocate Basic area

MT .REBAS $17 release Basic area

MT.ALCHP $18 allocate space in common heap
MT.RECHP $1% release space in common heap
MT.LXINT $1A link in external interrupt handler
MT.RXINT §18B remove external interrupt handler
MT.LPOLL $1C link in polled task

MT.RPOLL $1D remove polled task

MT.LSCHD S1E link in scheduler task

MT.RSCHD 51F remove scheduler task
MT.LIOD $20 link in IO driver

MT .RIOD 521 remove IO driver

MT.LDD 22 link in directory driver

MT .ROD $23 remove directary driver
18.14.2 Trap 2 Keys {I/0 Management Traps) -

10.
.CLOSE $02 clase channel
10.
DELET $04 delete file

10

Io

Io.

13,
I0.
io.

OPEN $01 open channel

FORMT $03 format medium

OPEN D3 keys:

OLD a open old [exclusivel file or device
SHARE 1 open old {shared) file
NEW 2 open new (exclusive] file

Page 145

Page 145

ICG.OVERW 3 overwrite [or open new) file
I0.DIR 4 open directory

3
-—
‘_1

NWimmTm Y

4.3

i

=
5 é

[t

Wiy
™ —f b -

23
G m 2 omm

LEXTOP
.PXRENG
LCHENG
.BORDR
WDEF
.CURE
.CURS
POS

. TAB
.NL
.PCOL
.NCOL
.PROW
.NROW
PR
.SCROL
.SCRTP
.SCRBT
.PAN
.PANLN
.PANRT
.CLEAR
.CLRTP
.CLEBT
.CLRLN
.CLRRT
.FOUNT
RECOL
.SETPA
.SETST
.SETIN
.SETFL
.SETUL
LSETMD
.5ETSZ
JFILL
.DONL
.POINT
LLINE
.ARC
.ELIPS
.SCALE
.FLOOD
.GCUR
.ROP
.botT
.LIN
.CHECK
.FLUSH
.POSAB

Trap 8 Keys {I/0 Trapsl -

$G8
304

582
803
04
845
307

303
804
808
$0C
$00
$0E
$0F
$10
811

$12
813
514
$15
$18
317
$18
$19
$1A
$18B
$1E
$1F
820
521

$22
$23
$24
525
526
$27
828
$29
$52A
$2B
$20
$2p
$2E
$2F
$30
$31

$32
$33
$34
$35
$36
$37
$38
$39
40
$41

$42

check for pending input
fetch 2 byte

fetch & Line of bytes
fztch & string of bytes
gdit & line

send 2 siring of bytes
sxternal operation [A3)
pixel based size / paosition snquiry
character based size / pesiticn enguiry
define window border
define window

enable cursor

SUppress cursar

absolute position

tsb (horizontal position]
newline

previous column

next column

previgus row

next row

sat pixel position

scroll whole window
scroll top of window
scroll bottom of window
pan window

pan cursor Line

pan AHS of cursaor Line
clear whole window

clear top of window
clear bottom of window
clear cursor Lline

clear to right of cursor
set fount addresses
recolour a window

set paper colour

set strip colour

set ink colour

set flash on/off

set underline on/off

get write mode

set character size

fill block

do pending newline

set point in window

draw Line

draw arc

draw ellipse

set graphics scale

set fill mode/vectors
set text cursor using graphics coords
rasterop

paints in pixel coords
lines in pixel coaords
check all pending operations
fiush buffers

position file pointer (absolute)

Page 147

F5.L0AD

F3.SAVE

$43

e

St 4

348
547
$48
$48

position fiie pointer {relative!l
information sbout medium

set file header

read fite header

load file

save file

Page 148

18.15 List Of Vectored Routines

The following is & list of the vectored routinss, together with the
of their assoccisted vectors. ALl keys ars in hex

BP.INIT $11 add m/¢ precs/fns to BASIC

BP.LET $120 =assign TOE toc variable

BY.CHRIX $11A reserve space on RI stack

CA.GTINT 5112 get word psrameters tc BRI stack
CA.GT 8114 get Tlozsting point numbars
CA.GTSTR $11€ get strings

CA.GTLIN $118 gst lang integers
CN.BTOIB $104 ASCII binary to byte
CN.BTOIL $108 ASCII binary to long
CN.BTOIW $106 ASCII binary to word
CN.DATE $EC get ASCII date and time
CN.DAY $EE get ASCII day of week
CN.DYOF $100 ASCII to floating point
CN.DTOI $102 ASCII to integer

CN.FTGD $FO floating point to ASCII
CN.HTGIB $10A ASCII hex to byte
CN.HTOIL $10E ASCII hex to long
CN.HTOIW $10C ASCII hex to word
CN.ITOBE $F4 byte to ASCILI binary
CN.ITOBL &F8B long to ASCII binary
CN.ITOBW $FG word to ASCII binary
CN.IT0D $F2 word integer to ASCII
CN.ITOHB $FA byte ta ASCII hex
CN.ITOHL SFE Long to ASCII heax
CN.ITOHW $FC word to ASCII hex

I0.NAME 3122 decodes a device name
I0.QSET $0C set up a queue

ID.QTEST $0E test status of queue
I0.GIN SE0 put byte into queue
10.680UT $E2 extract byte from queue
I0.QEDF $E4 put EOF marker into queue
I0.SERQ $SEB direct queue handling
I10.SERIO $FA general IO handling

The MD routines are indexed by $4000.

MD.READ $124 read a sector

MD.WRITE $128 write a sector

MD.VERIN $128 verify a sector

MD.SECTR $12A read a sector header

MM.ALCHP §C0 allocate common heap space

MM ALLOC 508 allocate an area in a heap

MM . LNKFR $DA link free space back into heap
MM . RECHP $ca releases common heap space
RI.EXEC $11C executes an operation
RI.EXECB $11E executes a list of operations
UT.CON $C6 set up console window

UT.CSTR $EG compares two strings

Page 149

addresses

UT.ERR
UT.ERAD
UT.LINK
UT.MINT
UT.MTEXY
UT.8CR
UT.UNLNK
UT.WIRDW

3CC
3CA
gDz
3CE
300
$C8
sC4
$C4

write error message to channel

write error messesgs to channel zere
tink an item into & list

convert integser to ASCII, gut on chen
send message to channel

set up screen window

unlink an item from g tist

set up window veing supplisd neme

Page 150

Page 151

18.C DCING BUBINESS WITH SINCLAIR

The purpose of this secticn is to encourege thoss thinking of cdeveloping
commarsial scftware for the QL to consider offering it to Sinclair Hessarch
for publishing, promotion and distribution. There zre various options offered
to software houses, with varving degrees of Sinclair involvement end support.

The first option is that of full publicaticn and manufecture by Sinclzir,
whereby the new product is teken 835 a3 mastsr with draft documentation,
packsged in Sinclair psckaging &iyle and =sold under the Sinclair logo in atl
the c¢utiets stocking &inclair hardware products. The software house is
therehy reieased completely from the tasks aof production, pecksging,
promotion, distributicn and sale, Far such =& proposat to be financially

viable, Sinclair has to obtain an exclusive Llicence for the praoduct on
Sinclair computers, and Sinclair will pay a percentage rayalty om every unit
sold. The software house remains free, of course, to develop the softwsre for
other computers, should it wish teo do so. '

The second option is for the suftware houssz to give Sinclair an exclusive
licence to distribute the product in 8Sinclair packaging, but to sell the
product to Sinclair as a fully packaged finished product to Sinclair
specification. In this way the software houss remains respansible for
production and packaging, with Sinclair undertaking promotion, distribution

and sale.

The third eption is for the software house to retain responsibility for
production, packaging, promotion, distribution and sale of the product, but
allowing Sinclair to offer the product far sale in addition. This method
provides the software house with an opportunity to increase its sales, as the
praoduct will be promoted in atl Sinclair Mail Order literature. As orders are
received, they will be passed to the software house, and Sinclair will require
a percentage commission on orders generated in this way. Under this option,
Sinclair packaging is not used for the product and so it remains very much the
software house's 'own brand’.

Further details cof the above options are given later on in this section, but
first, the procedure for offering software to Sinclair is dealt with, together
with Sinclair methods of review and appraisal.

18.1 How To Offer A Product To Sinclair

When a software house offers a product to Sinclair for publication, two main
areas have to be examined.

The first of these areas is the product concept. Under this heading, answers
must be provided to such questions as:

What is the product?

What does it do?

For what type of market is it intended?
Does it exist?

If it exists:
How is it selling?

Mathods of Sale?
Volumes to date?

Page 152

What machine doss it run on?

What kingd of sales are anticipatad?
Bassd on whet kind of information?
Are theres any other preducts Like 1% and if sc which?
Cobvicusly, soms cof the guestions tisted sbove asssume that the product doss not
slready exist for the QL or sny other Sinciair computer. However, if it does
her computers, the second arez to be exemined weould be concerned

st
run on sgme oLh
with how the product might be =dapted tec maks use of the GlL's features.

Specifically:

How would the product change?
What kind ef pricing structure is envisaged?
What volume of sales are expected with respect to a low-cost computer

such as the QL7
Would the target market change at sll and if so, how?

Apart from considering the two areas described above, the product would need
to be reviewed by Sinclair. For such a review to take place, the software
house would need to send either:

1. The product itself, running on the QL, together with draft
documentation. It need not be finished and completely bug free, so
long as it is sufficiently complete to be able to be put out for

review.
or

2. The product running on another machine, preferably on Apple II,
Macintosh or an IBM PC.

ar
3. A detailed product proposal on paper if the product exists only as a

design. Such a proposal should cover at the very least the product
concept and the proposals for the GL versiaon of it.

18.2 Where Saftware Products Should Be Sent For Review

1. Business software or proposals should be sent to the Business
Software Editar, at the address given in the Introduction to this
manual.

2. Educational software or proposals should be sent to the Educational
Software Editor, at the same address.

3. Anything that does not fall clearly 1into either of thase two
catagories, (e.g., games, compilers, utilities, expert systems etc.],
should be sent to the Software Manager, at the same address.

Page 153

18.3 How Froducts Are Reviewed And What Sinclair Are Looking For

1.

"SBaftware of this ¢

Bames and sntertainment sofitwars

reviewed by ocusside raviswers,
tooking for ariginality, graphics,
sofiware 1is Jjudged under these
zlso compare the software to other
to identify any bugs which may
improvements which may bz made.

e

)

[{)]
o B

ey

[£)]

B, -0
-5
~ty (D[

ra
o}
]
=1
n

el

e
-

o
A M -

cften sixth fo
gxcitement, vari

five categoriss.
similar produc
reguire fixing

S

T3
I e)

L= T,
o

V' ope < M
o

b
v }
- Oy
ot — @ O

11} m

v} ®

M D - e
=y

ot 0
) -
(@]
m m
ot
¥
n
;|
3

As the computer games market is both extremely competitive and
overcrowded, &inclair can onily consider sbsglutely top quality
products for distribution. At the same time, the QL has expanded the
range of possibilitiss in the context of entertainment software, thus
any new ideag for using computers at home for entertainment and
tleisure activities would be reviewad with great interess.

Compilers and Utilities

Technical produsts of this kind will be reviewed internally in the
first 1instance by Sinclair software engineers. They will judge the
product far its completeness, the adequacy of its documentation, the
speed at which 1t rumns on the QL and its technical competence. 1In
some cases where the product is of a very specialist nature it would
be put out for review by an independent consultant.

Educational Software

Educational products, either for school, polytechmic, university or
home wuse, will be reviewed internally at first, and possibly also by
Sinclair educational censultants. The following categories are of
particular interest to Sinclair:

1. Software which catérs for specific university and polytechnic
markets.

2. Software which provides adult home education in fields previously
uncatered for.

3. Software which actually teaches rather than tests foreign
Languages such as French, German or Spanish.

4. Software which teaches people how to expand their potential for
different employment markets, for example, teaching touch typing,
word processing, how to understand accounts, how to program etc.

5. Expert systems and asuthoring systems, especially if they have
application software running under them which can also be sold.

Business Software

Business software will be reviewed internally unless it caters for a
specific vertical market in which case Sinclair may seek permission
to have the product reviewed in detail by an independent consultant.
When possible business packages are being considered, both the
company and the product will be examined very carefully, Thus the

Page 154

n
|
e
L
in
Q
[y
L]
or
ot
3]
]
ct
1]
-3
.

following are particul

¢ neme

[43]

4. Estabiished suppli of business products with a2 respect

in the business m

[+

roducts which would benefit from distribution in wider markets
and at a lower prics than et present.

nJ
T

nECESER

guct

)

Supplisers whe can, i
needed by thei oro
additional uost.

4] ""h

vide any direct sugport
" tamers, puossibly st

ct

-1
=
o
-
0

company

4. A secure financial backing which will =ansure
H roduct,

will not disappear after 8Sincleir have
leaying no support for it.

13

19.4 Contractual Options In Dealing With Sinclair Research

In the introduction to this section several possible contractual options were

described,

1.

which will now be explored in more detail.
Distribution in Sinclair packaging

Royalty contract — every software house which offers a product to
Sinclair Research for distribution in Sinclair packaging under the
Sinclair name, will he asked to sign a Licence Agreement of the type
shown in Appendix A, This agreement allows for the grant of an
exclusive Licence to Sinclair Research for the distribution and sale
of the specified software products, in return for & royalty which is
normally 20% of the selling price.

BHistributicn of finished goods

Those software houses from whom Sinclair agree to buy a complete
finished product packaged to Sinclair specifications, will be asked
to sign a second contract in addition to the Software Licence
Contract described above. This second contract would provide for the
supply and purchase of manufactured goods on an 'at cost plus' basis.
In this way, a packaging specification would be agreed upon for the
product, and Sinclair would nominate approved suppliers of each
companent of that packaging. The software house would then purchase
these components from the nominated supplier at a price previously
negotiated between Sinclair and the supplier. The cost of the
product would then be passed on to Sinclair, the software house
having added a fixed margin as their handling fee for controlling
production.

Sinclair approved products

Under this aption, the product would neither be sold in Sineclair
packaging nor would it carry the Sinclair name. It would instead be
packaged in the software house's own packaging under its own name.
It would, however, be promoted as a Sinclair endorsaed product in the
Sinclair catalogue. Orders would be sent to a special PO Box at
Sinclair's despatching warshouse and would then be forwarded direct

Page 155

to the software house for fulfiiiment. Sincisir would, eof courss,
expect %o be paid 2 percentage commission on orders gsnerasted in this
way, which would normally be eguivalent to 153 of the retail sslling

price.

18.5 Prometion And Distribution

1.

Sinclair packaged scfiware

As might be expected, software carrying the Sinclair Logo attracts
the bulk af Sinclair promotional activities. In particular, all
software carrying the Sinclair logo and name will:

1] be offered initially to all Qlub members directly, possibly at =
small discount as an introductory offer;

2} be carried in a catalogue which will be included with every GL
shipped;

3} be taunched to the trade and specialist press, and dincluded in
advertising campaigns from time to time;

4] be the subject of special promotions which will be considered for
vertical market software;

5§} offered the possibility of consideration for bundling contracts
from time to time. This can be a very lucrative way of ensuring
that the software reaches the widest possible market;

8] be offered to our local area affices and distributors all over
the world, for translaticn into foreign languages;

7} be similarly offered to our Boston Office for publication and
distribution in the United States.

Sinclair endorsed products

Where a product is not distributed in the Sinclair packaging, but is
being promoted and offered for sale through Sinclair, then it is
likely to be promoted using methods i) and i) only, though from time
to time, where appropriate, other methods of promotion and marketing
will be considered. To attract the full range of Sinclair's
marketing “sctivities a product needs to be offered for distribution
in both the Sinclair packaging and brand name.

Paga 1536

18.8 Summary

Many sofware housss writing software for personal computers teday are
concsrned about the possible dilution of effort that is entsiled when a
product has to be packaged, promoted, marketed and sold as well as developed.
Sinclair Research =re known for their sbility to obtasin media caverage and for
their marketing and distribution capshbilities.

In the case ef the G » Sinclair belisve that software houses can be offered
distribution oppert fies withaut equal. The Glub will ensble dirsct contact
to be retained wwtﬂ cus*amnrs an a far larger scale thsn previously possible
with other Sinclair computers. It is propossd to use the Qlub Newsleiters as
a method of informing customers of every new product launched 1in advance of
the general public. Small discounts will be offered which will make the
product attractive to the customer, but will not begin to approach the kind of
discounts Sinclair would need to give should the product be offered through a
distributor or & retailer.

It is hoped that software houses will feel thet to offer software to Sinclair
in one of the ways described above will prevent many of the problems
previcusly assgciated with bringing their products onto the market place.

20.0 BI8

1.

Page 157

LIDGRAPHY

MCGER00 18/32-kit microprocessar programmer's reference manual.

orola, ISBN 0-13-5686785-X.

ot

Puplished by Prentice-Hall far Mo

details for the #CBB000 and
ressing modes and bus cycle diagrams. Some
d, but no timing diagrams.

Contains instiructicn sst
including permissible add
hardwars detail is inctiude

Motorocls Semicanductsors 18-bit microprocessers datz manual — 1883,

Published by Motorola Ltd., York House, Empire Way, Wemb Ley,
Middlesex.

Contains the hardware reference for the MC58008.

QL SOFTWARE DEVELOPER'S GUIDE — INDEX

A1 stack sss arithmetic stack
access layeb

of device driver

of direstory drive
add-on

card BOM

cards

hardware

peripherals

RAM

ROM

" allecaticn

- heap

memory
atphabets, special
area flood
arithmetic

interpreter operatian

codes

stack
array stdrage
atomic actions
auto—repeat

baud
blocks
physical
slave
BOOT
device driver
file
barder
BP.INLIT
BP.LET
buffer
bus error
business
BV .CHRIX

CA.GTFP
CA.GTINT
CA.GTLIN
CA.GTSTR
CAPSLOCK
change queue characigr
channel
close
console
definition black
ID
number
open
table
superBASIC
character conversion

~1
n
-
n
mm

L WD
n n

n'] -

)
[fu]

O ;o w

bt I I TR o I T I)
‘.D.'!w
o

s 4]

(¥}
[a03
[u%}
w

6,14,86
6,7,14,19
41

62,104

101
20,33,79
31

g

18

36,45,103

23
6,26,98

10
10
17,85

32,38,78,105

33,78,105
29

8

106-108

14,33,79,105

33,79,105
33,79,105
33,798,105
33,79,105
18
18
15

15,18,21,24,25

16,18
1¢,23,99
12,15

33

15,18,21,24-25

29,33-34
6,97
80,81

Page 158

characier set
change gususe
freezs screen
local
spacing
character sizs
clock
reat~time
CN.BT0IE
CN.BTQOIL
CHLETOIW
CN,.DATE
CN.DAY
CN.OTGF
CN.BTOI
CN.FTCD
CNLHTCIB
CNLHTOIL
CNHTOIW
CN.IT0BB
CN.ITOBL
CN,ITOBW
CN.ITGD
CN.ITGHB
CN.ITCHL
CN.,ITOHW
code
initialisation
position-independent
restrictiaons
colour
border
ink
paper
strip
command interpreter
commen heap
altocation
release
console
I/0
console channels
special properties
contracts
coordinate system

graphics
pixel

CPU dinterface

CTS .

cursor =
flashing
increment
pasition

date

definition block
channel

devica driver
- directory davice

Bmm b

b
o
s
[
B

Q) DM L)~
MO MmDEW|m

5,6
6,14,86
B7

16
16-18,28
16

18

108

16
16
38-319
36
73
18
17
17

80

19,23,89
19-20

Page 158

L{inkage
file sysism
physical

davice
decading
name
device driver!

BOOT

initialisation
memory allccation
microdrive
network
non—directary
physiecal Layer
pipe
screen
serial 1/0
serial netwark Link
user defined
user supplied
directory device driver{s]
access layer
initialisation
tinkage block
microdrive
display
control
modes
RAM
display control register
distributian
draw
DTR

error
bus
keys
messages
exception processing
EXEC
EXEC_W
gxpansion

gxtensions, opeorating system

external interrupt

file
BOOT
header
format
I/0
pointer
program
shared

fila delete

ny W ny
3 D

15
18,82

15
14,15,19-22
4g9,20,21-22
10

28

28

15-20

23-27 ,37
15-20

19

28

37

23,24
13,18,20

28

28

28

28

13

18

23-27

24

23

23

37

35-36
16,46
5,35

36
108-109
72

36

a3
89,93
9-10
12
12

38
11,13
9,20

10
16
18
16
18
29
24
24~-25

Page 180

file system definiticn blocks
flag
characteristics
flashing
floating po
format rout
fount
frame interrupt
fres memory
freeze screen character
F5.CHECK
F3.FLUSH
FS.HEADR
F5.HEADS
FS.LOAD
FS.MDINF
FS.POSAE
FS.POSRE
F5.8AVE
functions
linking
superBASIC

nt storage

i
ine

graphics
coordinate system
gperations

hardware
add—on
heap
allocation
common
expanding
linking free space intao
mechanism
management
setting up
user

initialisatian

code

device driver

directory device driver

Qdos

system management

tables

system variables
Input/Cutput (I/0} .

console -

file

gueue

screen

serial
Input/Output Sub—System
Integer storage
Intetligent Peripheral

cantroller
B0O49 (IPC)
Link commands

(%%]
m

= O nowy W0
) G

]
{4 PR

L9 LB A= B [y B o' N G Rt Sy v
43}
-
B

3w N o

T - s S 1
Qoo
B B e e

. S Y

-

ay n o o=

80,104
1,104

51,104

§2,104

32

32

13

17,72
15
18

35,102
a5

14
6,14,86

5,6,86,87

14
87
6,14
44
14
14

15,20
18-20
23

5-10,93-105

10
10

15-18,21,22,24,25

16-18,28
18
18
16-18,28

15,19,28,36,84

§,15,24
30,31

36,48
1M

|
n3
=l

C

[
s

fen

Fage 161

Page 162

intarfacing 25-34
interrupt 13,18
suto—vastored 8
gxternal g,20
frams 8
tevel 7 10
non—maskable 10
polling 20
traps for g-10
intzrrupt sSsrvers g
1/0 ses Input/Output
Ig.CLESE 55,103
IO.DELET 24,585,103
I0.EDLIN 18,862,104
I0.FBYTE £3,104
I0.FLINE 18,583,104
I0.FORMT 56,103
I0.FSTRG 53,104
1/0 management traps 7 ,55-5
close channel 55,103
delete file 55,103
format medium 56,103
keys 103
open channel 57,103
I0.NAME 21,82,105
I0.0PEN 24,24,57 ,103
I0.PEND 54,104
I0.GEOF 83,105
I0.QIN 83,105
I0.00UT 83,105
I0.0QSET 83,105
I0.GTEST 83,105
I0.SBYTE 71,684,104
I0.SERIO 22,84,105
I0.SERQ 22,84,105
I08S see Input/Output
Sub—system
I0,.SSTRG 65,104
1/0 traps 7,13,88-77
absolute position 73,104
character based
size/positian
enquiry 73,104
check all pending
operations 58,104

check for pending input 64,104
clear part or whole

window 66,104
define window ~. 77,104
define window border 65,104
edit a Line . 62,104
enahle cursor 67,104
external operation 68,104
fetch a byte 63,104

fetch a line of bytes 63,104
fetch a string of

bytes 63,104
fitl block §8,104
flush buffers 58,104

Page 163

informaticn sbout

medium §0,102
keys 104
load fils E0,102
newiins 73,104
next coiumn 73,104
naxt row 73,1484
pans part cr whale

window 71,104

pixel based size/
ngsition enguirer 73,104

8]
plots and craws
verious lines and
arcs 72,104
position file pointer
{absolutel 61,104
pasition file pointer
{retative] 1,104
previcus column 73,104
pgrevious row 73,104
read file header 53,104
recolour a2 window 74,104
save file Bz,1d4
scroll part or whete
window 74,104
send a byte 64,104

send & string of bytes 65,104
set character size

and spacing 76,104
set character size . 75,104
set file header 59,104

set fill mode vectors 69,104
set flash and under—

score 75,104
set found addresses 70,104
set pixel position 71,104
set screen colours 76,104
set write mode 75,104
SUppress curser 67,104
tab (horizontal
position) 73,104

IPC see Inteilligent Peripheral
controller

Jjobi{s] 7,11-13
active 1112
format 12
header T 298,97
ID §,12
inactive : 11
start-up 1M1-12
suspended _ 11
table 12
tree 47 ,49

keyboard
auto—repeat B
caontrol 36

G nan-English Language 40

special functions
type—shsad
KEYROW

{ine number table
linked Llists
linking

functions
procadures

machine code

procedures
programming

Manager traps

activate a job
adjust clock
allocate a bit of a
heap
allocate BAEIC srea
allocate resident
procedure area
allocate space in
common heap
create a Jjob
find haw much free
space there is
force remove a job
get information on job
get system informaticn
keys
link external interrupt
handler
tink in directory
driver
link in I/0 driver
link in polled task
Link in scheduler task
read clock
release a bit of a heap
release a job
release BASIC area
release resident
procedure area
release space in
common heap
remove directory driver
remaove external
interrupt-handler
remove I/0 driver
remove job
remove polied task
~remove scheduler task
send IPC command
set a job priority
set baud rate
set clock
set display mode
set pointer to trap

Page 164

18
18
36,40

29
14,80

32
22

13
11-13
7,42-54
42,103
42,103

44,103
43,163

44,143

43,103
45,103

45,103
47,103
43,103
47,103
103

50,103

50,1083
50,103
50,103
50,103
50,103
49,103
51,103
51,103

52,103

51,103
53,103

53,103
53,103
52,103
53,103
53,103
48,103
50,103
45,103
53,103
46,103

redirection vector 54,1083

Page 165

guspend & job 54,1483
Master chip 35
MD.READ 37 ,B5,185
MD.SECT §,37,85,108
MD.VERIN 37 ,85,105
MD . WRITE 37,885,108
medium name 28
memary

allocatien g8,7.14,18

block table 38

davice driver 18

free 5,8,14

map 5~7, 38

organisation in

superBASIC 29

microdrives 15,16,26,28,37
microdrive support routines 83
MM.ALCHP 14,886,185
MM.ALLGC 14,86,105
MM, LNKFR 14,87 ,108
MM .RECHP 14,87 ,105
MT.ACLEK 36,42,103
MT.ACTIV 42,103
MT .ALBAS 14,43,103
MT .ALCHP 6,14,43,103
MT .ALLGC 6,44,103
MT .ALRES 14,44,103
MT.BAUD 36,45,103
MT.CJCB 45,103
MT.DMODE 16,35,36,46,103
MT.FREE 45,103
MT .FRJOB 47 ,103
MT.INF 6,40,47,103
MT.IPCOM 36,40,48,103
MT.JINF 49,103
MT.LDD 19,23,50,143
MT.LIOD 19,50,163
MT . LNKFR 49,103
MT.LPOLL 18,23,50,103
MT.LSCHD 19,23,50,103
MT.LXINT 19,23,50,103
MT.PRIOR 53,103
MT .RCLCK 36,50,103
MT.RDD 19,51,53,103
MT.REBAS 14,511,103
MT .RECHP 6,14,51,103
MT .RELJB 51,183
MT.RERES T -14,52,103
MT.RIOD 19,53,103
MT.RJCB . 52,103
MT.RPOLL 19,53,103
MY .RSCHD 18,53,103
MT .RXINT 19,53,103
MT.SCLCK 36,53,103
MT.SUSJB 54,103
MT . TRAPV 8,54,103

name
decode 19,21,23,82,105

Page 1686

List 25,30
pecinter 30
tabhle 2¢-30,32,7E
netwark £8,37
newline 15,17
non—English 4G-41
version codss g
NTSC 40
on-board
RAM 35
ROM 3s
opsrating system 5
gxtensions io 11,13
operations
' executing lists of 88
execution of g8
ownership 108
FAL a0
pan 17 .,71,1064
parameter passing 32
parameters, actual 33,79
peripheral card addressing 3s
peripheral cards 38-38
peripheral chip a5

physicat definition block 23
physical layer device driver 13,18,20

pipe 15,28
pixel coordinate system 16 -
plot 72
pelling interrupt 26
priority 11,850,851
procedures 32
Linking 32
SuperBASIC 11,13
program file 29
programming 35-37
. promatian 108-109
publication 108
(ldos
initialisation 5
keys 83-108
routines 7-8
gqueue(s] 83
asynchronous 18
handling " 84
header 100
1/0 : 18
typs—ahead 18
RAM 5,14
add-on 35,38
base 5
display 5,35
on—board 35
- screen 35

test 10

Page 167

real—-time clock 35,35
recalouring 74
resident procedurs 2res 5,6,7,13,14
regtrictions an code 32
return List 29
RI,EXEC 88,103
RI.EXECE 88,165
RI stack ses arithmetic stack
RGH 8,15,3
add-cn 7,35,38,38
format 28
on—board 35
plug—in 35
Rse32 see serial I/0
save area g7
scheduler lLocp 20
screan
colour 78
I/0 16-18,28
RAM 35
screen character gutput
operaticns 17
screen driver 28
datablock 100
scrolling 74
SD.ARC 18,72,144
S0 .BOROR 17,685,104
SD.CHENG. 17,73,104
SD.CLEAR 17,66,104
SD.CLRBT 17,686,104
S0 .CLRLN 17,686,104
SD.CLRRT 17,686,104
SD.CLRTP 17,686,104
SD.CURE 17 ,67 ,104
SD.CURS 17,67 ,104
SO.ELIFS 18,72,104
SD.EXTOP 18,68,104
SB.FILL 17,68,104
S0 .FLOOD 18,658,104
SD.FOUNT 17,740,104
5D .GCUR 18,72,104
SD.LINE 18,772,104
SO . NCOL 73,104
SD.NL 73,104
SD . NROW 73,104
SD.PAN 17,741,104
SD.PANLN 17,71,104
SD.PANRT v 17,771,104 -
SD.PCOL 73,104
SD.PIXP . 71,104
SB.POINT 18,72,104
5D.POS 73,104
SD.PROW 73,104
S0.PXENG 17,783,104
S0 .RECOL 17,774,104
SD.SCALE 18,72,104
S0 .SCRBT 17 ,74,104

S0.5CROL 17,74,104

Eb.5CRTP 17.,74,184
S0, SETFL 17,753,104
SB.8ETIN 17,768,184
E0.5ETMD 17 ,75,104
8D .SETPA 17,768,104
SD.SETST 17,786,104
SD.SETEZ 17,78
SB.SETUL 17,75,104
SD.TAB 73,104
S0, WDEF 17,77 ,1G4
ssrisl 1/0 15,18,
device driver 28
serial network lLink 28
slave biock §,28,88
table cB
slaving 16 ,24,26-27
software
business 108
commercial 106
compilers, utilities 107
educational 107108
entertainment 107
games 197
review of 107-108
sound caontrol 36
stack
arithmetic 29,33,79
supervisar 9
user 39
start-up 5,10
job 11
system 10
storage 30-31
array 31
floating point 34,31
integer 30,31
string 31
substring 31
strings, comparison of 83
string storage 31
substring storage 31
SuperBASIC 5,6-7
channel table 6
format g7
data area 13
function 32
jnitialisation 10
interfacing 2 29-34
memory organisation 29
procedures and ‘
functions 11,13
praogram B
traps 7
variables 6,94~96
work area 5,6~-7,29
supervisor
mode 7,9,32
" stack 9
suspended jaob 11

Page 168

system
ich tabis
msnagement tables
initialisation
start-up

variables
bass

initialigation

tables
channel
job
tine number
memory btock
name
system management
tasks
external interrupt
polling interrupt
scheduler Lloop
time—out
token List
transient program area

traple)
#0
#1
#2
#3
#a
8rrors in
hardware interrupts
Input/Output

Input/Output control

keys
manager
redirsction
sogftware error
SuperBASIC
user
type, name table
type—ahead gueue

user
code
heap
traps
user stack .
UT.CON
UT.CSTR
UT.ERR
UT.ERRO
UT.LINK
UT.MINT
UT.MTEXT
.UT.SCR
UT . UNLNK
UT . WINDW

3]

T m

R NS N |
€3 CY
 a
£ «
~A
o
t
¥
o
o

e

2g-30,32,78
5,6,10

11,18,19

20

20

20

18,22,42

29
5,6,7,11,13,14,45

7,13,58-77
7,55-57
103-104
7 ,42-54

6,14
14

ag
92,105
89,105
89,105
89,105
90,105
91,105
91,105
92,105
90,105
92,105

Page 168

value pointer
variables
SuperBASIC
system
variable values area
vectored routines
grror handling
vidao,
for monitor gperation
for TV. operation

windows
border
clearing
coldur
overian
position
properties and

operations

setting. up
size

ZX8301
ZXg3ge

Page 170

[V
Lo]

o 0 0 N Lnoon
[} -
o -

Y
[i o |

18,17
17,85
65

17,74

17
17
g2
17

35
35

Sinclair QL Preservation Project (SQPP)

On January 12" 1984 Sir Clive Sinclair presented the Sinclair QL
Professional Computer in a typical Sinclair-extravaganza type
launch event at the Intercontinental Hotel, Hyde Park Corner,
London. This was exactly 12 days earlier than Steve Jobs presented
the Apple Macintosh.

The QL still is a very good example of an innovative, stylish,
powerful and underestimated product. On one hand it failed in the
market but on the other hand it influenced many developments
which ended in many of today's computers.

2009 was the year of its 25" anniversary in which month by month new activities were
launched.

Jan 12" — 25" Launch anniversary day. Message spread to VIP,

community and media.
http://tinyurl.com/qgl-is-25

Feb 19" — Massive 11 pages coverage of the QL in the April Issue
of Personal Computer World (PCW) magazine.

http://www.pcw.co.uk

New-SindlarQL : £399

Mar 12" — Sinclair QL Preservation Project (SQPP) launched,
el | = i starting with Documents/Publications from Sinclair Research Ltd

and various computer magazines of the years 1984 to 1986.
=1 http://tinyurl.com/sqpp25

2014 is the year of the 30th anniversary. Check out the brand new website
http://www.qlis30.org.uk/. Activities include THE MOVIE, THE STORY, THE
REPOSITORY, THE DISTRIBUTION and much more to come. Stay tuned...

QL forever!
Urs Konig (aka QLvSJAGUAR)

http://www.glvsjaguar.homepage.bluewin.ch
http://www.youtube.com/QLvsJAGUAR
https://plus.google.com/104042128125238901905/posts

	1984_Sinclair_QL_Software_Developers_Guide_by_Tony_Tebby_and_David_Karlin-OCRed
	SinclairQL_Software_Developers_Guide_1984_TonyTebby_DavidKarlin
	QL Software Developers Guide Part 1
	QL Software Developers Guide Part 2

	SINCLAIR_QL_Preservation_Project_SQPP-V5_2014

