
QL software developer's auide

by Tony Tebby and David Karlin

edited by Mich~Le Wright

1 .0
2.0
2.1
2.2
2.3
2.4
3.0
3.1
3.2
3.3
3.4
4.0
4.1
5.0
5.1
5.2
5.3
6.0
6.1
6.2
6.3
6.4
7.0
7.1
7.2
7.3
8.0
9.0
9.1
9.2
9.3
9.4
9.5
9.6
9.7
9.8
9.9
9.10
9.11
10.0
10.1
10.2
10.3
10.4
10.5
10.6
10.7
10.8
11 .0
11 .1
11 .2
11 .3
11 .4
12.0
12.1
12.2

Contents

A80UT TrlIS GUIDE . •
INTRODUCTION TO ODOS

Memory Map . • • •
CalLing Qdos Routines
Exception Processing.
Sta rt-up

~ACHINE CODE PROGRAMMING
Jobs • • . . .

ON THE O-L

SuperBASIC Procedures And Functions
Tasks •..•.•...••
Operating System Extensions

MEMORY ALLOCATION
Heap Mechanism ••.

INPUT/OUTPUT ON THE QL
SeriaL I/O .•..
Fi Le I/O . . . • .
Screen And ConsoLe I/O

ODDS DEVICE DRIVERS
Device Driver Memory ALLocation
Device Driver InitiaLisation
Physica L Layer •.•......
The Access Layer . • . . • • . .

DIRECTORY DEVICE DRIVERS • . . • .

. ,

InitiaLisation Of A Directory Driver '.
Access Layer • . . • .
Slaving .•

8UILT-IN DEVICE DRIVERS
INTERFACING TO SUPEREASIC

Memory Organisation Within The SuperBASIC Area
The Name Table •.•
Name List .•..•
Variable VaLues Area
Storage Formats
Code Restrictions
Linking In New Procedures And Functions
Parameter Passing ..•••••.•••
Getting The VaLues Of ActuaL Parameters
The Arithmetic Stack Returned VaLues
The ChanneL TabLe •.•.

HARDWARE-RELATED PROGRAMMING
Memory Map • . • . • . . .
DispLay ControL •..••
DispLay ControL Register.
Keyboard And Sound Control
SeriaL I/O •.•
Real-time CLock
Network
Microdrives

ADDING PERIPHERAL CARDS TO THE QL
Expansion Connector
CPU Interface • • • . • .
PeripheraL Card Addressing
Add-on Card ROMs

NON-ENGLISH QLS
Video •..••••
Non-EngLish-lenguege Keyboards

4
5
6
S

11
12
14
14
16
17
17
17
18
19
19
20
21
25
25
26
26
27
3D
30
31
34
36
37
37
38
39
39
39
41
41
42
42
43
44
45
45
46
46
47
47
47
47
47
49
49
50
50
51
52
52
52

Page 2

12.3
12.4
13.0
14.0
15.0
16.0
17.0
18.0
18.1
i 8.2
18.3
18.4
18.5
18.6
18.7
18.8
18.9
18.10
18.11
18.12
18.13
18.14
18.15
19.0
1 9.1
19.2

Character Set
Special Alphabets

MANAGER TRAPS
110 MANAGEMENT TRAPS
110 TRAPS
VECTOR EO ROUTINES
ODDS SYSTEM STANDARDS
aDDS KEYS

Error Keys ..•.•
System Variables ..
SuperBASIC Variables
Offsets On BASIC Channel Definitions
Job Header And Save Area Definitions
Memory Block Table Definitions
Channel Definitions ••..•..•
File System Definition Blocks
Screen Driver Data Block Definition
Queue Header Definitions •...
Arithmetic Interpreter Operation Codes
IPC Link Commands
Hardware Keys
Trap Keys •••.•.
List Of Vectored Routines

DOING BUSINESS WITH SIN CLAIR
How To Offer A Product To Sinclair
Where Software Products Should Be Sent For

Page 3

53
53
54
72
75

105
128
129
129
129
131
134
134
136
137
137
139
139
140
140
141
143
147
149
149

Review. . • • • • • • • • . • . • 150
19.3 How Products Are Reviewed And What Sinclair Are

Looking For ..•.•. • . • . . • . . •. 151
19.4 Contractual Options In Dealing With Sinclair

Research • . • . • . • . . 152
19.5 Promotion And Distribution 153
19.6 Summary 153
20.0 BIBLIOGRAPHy........ 155

(c) 1984 Sinclair Research Limited

Page 4

1.0 ABOUT THIS GUIDE

This guide describes the methods which may be used fer machine code
programming on the Q.L~ Its contents are also relevant to campi ler writers who
must implement a run-time library for other languages. This guide describes
only thOSe tEchniques which are specific to the Ql. It does not contain a
gEneral description of 68000 or 68008 assembly language programming: this
information can be obtained from a number of different sourcas, details of
which mey be found in the bibliography. It is, therefore, strongly
recommended that a reference book describing 68000 assembly language be
consulted befors attempting to understand this guide.

The guide also gives details of how various peripherals such
interfaces, add-on memory and ROM cartridges may be added on
many details about how the firmware for such devices should be

as hard
to the Ul,
written.

disk
with

Readers may notice that there are no circuit diagrams or detailed explanations
of the Ul's internal hardware structure in this manual. This is because it is
not necessary to have such information in order to write software for the al.
We have tried in the design of Udos to provide you with a stable interface to
the machine through its operating system; everything you need is there and so
long as you build your products using the interface provided there is no
danger that any future upgrade of the Ul will introduce an incompatibility
with existing software products. We will, in short, continue to support all
of the system routines documented in this guide, but specifically reServe the
right to change the Ul's hardware or firmware in any other way we think fit.
Provision of circuit diagrams and the like would, apart from endangering the
safety of our design patterns, be giving you a route to build products that
rely on nonsupported elements in the Ul's design.

The commercial section of this guide sets out the various options offered by
Sinclair Research for the distribution of Ul Software. Its aim is to give you
an idea of the way in which we work and the likely channels through which a
potential product would pass before it is accepted for publication and offered
for· sale to our customers. The section also gives information on the purchase
and duplication of Microdrive cartridges.

Finally, should you feel that anything essential is missing from this manual
we would be very grateful if you would write and tell us. The address to
write to is:

Software Publishing Department
[s Guide)

Research limited
Willis Road

C mb ri dge CB1 2AU

Page 5

2.0 INTRODUCTION TO ODOS

Qdos is the UL operating system. It is a single-user multi-tasking operating
system: that is, it provides the means for several independent programs to
run concurrently in the UL, but does nat provide any mechanisms to prevent
those programs from interfering with each other. Odes can be thought of as a
collection of several things:

1. A set of usefuL rout-ines for performing functions such as memory
aLLocation, Input/Output, etc ..

2. A mechanism for maintaining lists of things to be done cn
including the function of allocating slots of CPU time
which require them.

interrupt,
to programs

3. A mechanism for starting up the computer, and determining the
configuration of any add-on hardware that is connected to it.

The Qdos mechanisms for start-up are described in section 2.4. Once start-up
has been performed, ados does not "run" in the sense that traditional
operating systems run: its pieces of code and data structures simply exist
for programs to use. There is no Qdos "mai n program" that mai ntai ns
continuous control of the machine: the SuperBASIC interpreter, which takes
the place of the command interpreter found in traditional operating systems,
is simply a program which runs on the QL and uses Qdos's facilities, albeit
with a number of special provisions. It is possible, and indeed commonly
done, to destroy the SuperBASIC interpreter completely, and yet still USe all
the facilities of the operating system.

Note that in this guide, hex numbers are preceded by a dollar sign [$) as used
in the Motorola assembly language format.

'.

Page 6

2.1 Memory Map

This section describes how Qdos maintains its RAM area. In the QL, the RAM
starts with the screen RAM at address $20000, and the area available to QdDS
starts at $28000. In an unexpended QL, the RAM finishes at $3FFFF, whilst in
a aL Wl~n expansion memory, the RAM may go up as far as SBFFFF. The Qdes
initialisation routine determines the amount ef RAM present and adjusts the
position of its pointers accordingly.

The memory map is as follows:

1
SV_RESPR ____ I Resident procedure area 1

1----------------1
1 1

SV_TRNSP ____ I Transient program area 1
1----------------1
1 1

SV_BASIC __ I SuperBASIC area 1
1-------------1
1 Free memory area (used I
1 up for slave blocks by I

SV_FREE I the filing system) 1
1------------1
1 1

SV_HEAP 1 Common heap area 1

1--------------------1
1 1
1 System management tables 1
1-------------1
1 1
1 System variables 1 ____ Base of system variables
1 ------------1
1 1
I Display RAM 1
1 1

____ Base of RAM

2.1.1 Principles-

There is no memory management hardware in the Ql. This means that all code
must execute from fi~ed addresses in physical memory, and that a piece of code
may not be moved aftar it has been loaded into memory. For this reason,
memory is usually allooated in fixed size areas which remain in a fixed
location until deleted. The SuperBASIC area is an important exception to
this.

Page 7

2.1.2 System Variables -

The Qdos system variables ere e block of memory containing information
required by the operating system.

This block ;s normally Located at address $28000, but is not fixed at this
address in principle. AppLications programs should not rely on that fixed
address, but should get the address of the base of system variables by calling
the MT.!NF trap (see section 13.0).

Some of the system variables can usefully be monitored by applications
programs, and some of them can safely be altered. A complete list of the
system variables, each with its size and offset from the base of system
variables, is given in section 17.2.

Included in the system variables area are a set of tongword pointers
indicating the locations of the other areas in the memory map.

2.1.3 System Management Tables -

Immediately above the system variables are various tables used by Gdos to
maintain the list of jobs and various other pieces of information. The
supervisor stack also resides in this area.

2.1.4 Common Heap -

The Common heap area contains the channel definitions which are maintained by
the I/O sub system, together with the working storage required by the I/O
drivers or programs. The allocation of space in this area is carried out
either by device drivers, when invoked, or directly by jobs. There are two
traps provided to allocate and release space in this area: MT.ALCHP and
MT.RECHP (see Section 13.0). The heap allocations of a job are automatically
released when the job is removed.

The common heap is an example of the use of a general heap mechanism provided
by Gdos, which operates in the way described in the entry for MT.ALLoC in
section 13.0.

The USer code needs to retain one pointer to the free space in the heap. This
is a long word and is a relative pointer to the free space in the heap. When
the heap has no free space, either because it does not exist, or because it is
full, this pointer is zero.

2.1.5 Free Memory Area ~

The free memory aree is used by Gdos as a buffer memory for the Microdrives,
or, if Gdos is suitably extended, for other filing system devices. The aree
is structured as a collection of ~ blocks, that is, blocks which are
associeted with e physical block on a ~edium. When memory is allocated in
another area which would encroach on the fr'ee memory area, ados must remove
one or more slave blocks. Before such a removal takes place, ados ensures
that a true copy of the information is present on the medium.

Page B

Whilst the COmmon heap grows upwards into the free memory area, the areas
above it grow downwards into it. As there are three areas above it (the
resident procedure area, the transient program area and the SuperBASIC area),
special provisions are made So that all three can grow at the appropriate
times.

2.1.6 SuperBASIC area -

The SuperSASIC interpreter owns a special ares located immediately above the
free memory area; this area is used for all the interpreter's storage
requi raments such as the SuperBASIC program, it-s variables, its tabLe of
I/O channels and the interpreter's working storage. This area is noteworthy
in that it can be moved by adDS without the knowledge of the SuperBASIC
interpreter if an area above it needs to grow, or if the SuperBASIC area
itself neads to shrink. Its size may also be altered. The mechanism which
makes such movement or alteration in size possible operates as follows.

All references to the SuperBASIC area are made relative to the address
register A6, and the value of A6 on entry to the interpreter is adjusted by
Udos to the current base of the SuperBASIC area [whi ch ,i s held in the system
variable SV_BASIC], offset by the length of the interpreter's job header
(currently $68 bytes].

The SuperBASIC interpreter divides its working area
details of which may be found by looking at the
17.3. All of the pointers to these various portions

2.1.7 Transient Program Area -

into several portions,
BV definitions in section
are also relative to A6.

The transient program area is the area of memory into whiCh the user's
applications programs are loaded. Each job is allocated a block of memory in
the transient program area, which it keeps until it is deleted: this area is
used for the job's code, data and stack. Programs loaded in this way are not
normally re-entrant, but it is relatively straightforward to use the
mechanisms in the system to set up a single piece of code which is shared by
several different jobs with different data areaS.

There is no safe way
therefore programs
jobs] .

of determining a priori where a program will be loaded,
are normally pOSition independent (see section 3.1 on

2.1.B Resident Procedure Area -

Memory allocated in this area is unavailable to the operating system. The
system knows on l y two' th i ngs about the resi dent procedu re a rea: how to
allocate memory in it, and how to release it completely. Both of these
operations can only be carried out when there are no transient programs in the
machine, due to the fact that the transient program area cannot be moved.
Normally, the allocation is done immediately after start-up, and deaUocation
is never performed.

,",--'

Page 9

The area is normally uSed to load in macnlne code procedures and functions
written to extend the SuperBASIC language (see section 8.7), and occasionally
for loading in the code of device drivers when these are not located in ROM in
an add-on dav; c-s ~

2.2 Calling Qdos Routines

There are two categories of Qdos routines available to the user: traps and
vectored routines. The mechanism for calling a routine is different far each
of these two categories.

2.2.1 Traps-

Traps are caLLed using the 68008 TRAP #0 instruction: on the Ul, this has the
effect of a subroutine caLL to a defined location which has the side effect of
saving the status register and entering supervisor mode.

Of the sixteen trap numbers avaiLabLe on the 68008, numbers 0 to 4 incLusive
are defined for use by Udos, the remainder being free for the USer to redirect
to his own routines. RoughLy speaking, the traps are utiLised as foLlows:

TRAP #0 SpeciaL trap for entering supervisor mode

TRAP #1 Manager traps - routines which perform overalL controL of the
Ul hardware and of the operating system's resources

TRAP #2 Input/Output management traps (I/O traps whi ch a L loca te resources]

TRAP #3 Input/Output traps which do not a L Locate resources

TRAP #4 Speci a L trap for the SuperBASIC interpreter.

Traps are caLLed by setting up any required parameters in registers AO-A3 and
01-03, setting up the code for the required trap in DO (usuaLLy with a MOVEU
instruction), then executing the TRAP instruction. Trap routines do not
affect 04 to 07 or A4 to A6. There are, however, a few defined cases which
are exceptions to this.

When the TRAP operation is compLete, controL is returned to the program at the
Location foLlowing the TRAP instruction, with an error key in aLL 32 bits of
DD. This key is set to zero if the operation has been completed successfuLLy,
and is set to a negative number for any of the system-defined errors (see
section 17.1 for a List of the meanings of the possible error codes). The key
may also be set up as a pointer to an address which hoLds a UOOS error string.
In this case the key~is in the form address + $80000000 ie. with its top bit
set. The string is in the usuaL Udos form of a word giving the length of the
string, foLLowed by the characters.

Note that aLL traps can return the errOr code ERR.BP (for bad parameter).
Note also that the condition codes may not be set according to the error code
on return from e trap, thus a program wishing to detect an error should
execute a TST.l DO instruction immediateLy after the TRAP instruction.

Page 1 0

Data; ls of all the ados traps are given in sections 13.0-15.0.

2.2.2 Vectored Routines -

In addition to the routines acceSS2a by trapsf there are several uti lity
routines which are available to the applications program: their addresses are
held in a vector table which is located in the ROM starting at address SeD.
A vectored routine can be accessed by the following code:

MOVE.W
JSR

VECTOR_AODR ESS, An
[An)

where VECTOR-ADDRESS is the address of the vector table entry, end An is a
suitable address register which is not required by the particular routine on
entry.
There are Some exceptions to this technique: for some vactored routines, the
code is:

MOVE.W
JSR

VECTOR_ADORESS, An
$4000 [An)

The entries in section 16.0 for vectored routines which require this treatment
are suitably marked.

There are no general rules covering the handling of errors in vectored
routines. Some routines return an error code in DO in the same way as traps,
but others use the technique of returning to one of a set of alternative
return addresses. An example is the vectored routine MD.SECTR, which returns
to the location after the call if there is a "bad medium" error detected, to
the address 2 bytes later if there is a "bad sector header" error detected,
and to the address 4 bytes later for a correct completion. Thus the correct
code to trap these errOrs would be:

MDVE.W
JSR
BRA.S
BRA.S

VECTOR-ADDRESS,An
$4000 [An)
BAD_MEDIUM_ERROR
BAD_SECTOR_ERRDR

* Code for processing a correct return starts here

BAD_MEDIUM_ERRDR
* Code for processing a bad medium error starts here

* Code for processing a bad sector error starts here

Obviously, a similar mechanism can be used with any number of error returns
[including zero or one).

Page 11

Complete details of the vectored routines are given in section 15.0, including
information about the behaviour of each routine when an error occurs.

2.2.3 Atomic Actions -

In general, system calls are treated 2S atomic: while one job is in
supervisor mode, no other job in the system can take over the processor. This
provides for resource table protection without the need for complex procedures
using semaphores. If a job needs to execute some action other than a single
system catl into which no other job must be allowed to intervene, it should
enter supervisor mode before entering the code which performs this action.
Supervisor mode is entered using TRAP #0. The stack pointer only is changad
by this trap.

A job should only use 64 bytes on the supervisor stack, and all of the space
used on this stack must be released before exiting supervisor mode. In
general, there should be nothing on the supervisor stack when a manager trap
is made.

Some system calls are only partially atomic, that is, when they have ccmpleted
their primary function, some other job may gain a share of CPU time before
control returns to the calling job. These partially atomic system calls must
not be made from a job in supervisor mode. All of the scheduler calls (ie,
TRAP #1 with 00=4, 5, 8, 9, $A, $8J fall into this category, as do all the I/O
calls (TRAP #3J, unless immediate return (timeout=oJ is specified.

A piece of code in supervisor mode can be interrupted by the frame (50/60 HzJ
or· external interrupts, so care must be taken, when writing interrupt servers,
that the system's internal data structure is not modified, directly or
indi rectly, by system calls. In practice, since interrupt servers tend only
to be moving data into or out of queues, this is not a serious limitation.

2.3 Exception Processing

There are three categories of exception traps on the 68008: user traps, traps
for software error conditions, and traps for hardware interrupts. There is
also one special hardware trap called "bus error", which can be used to trap
bad conditions on the address bus: this trap is not suported by the QL
hardware.

User traps 0 to 4 inclusive are treated as defined in sections 13.0 through
15.0.

User traps 5 to 15 inclusive, together with the software error traps for
"address error", "; ltegal instruction lf

, "divide by zero", "check arrayl1, "trap
on overflow", "privilege. violation" and "trace" are redi rectable by the user
on a per-job basis: see the entry for MT.TRAPV in section 13.0.

Traps and exception vectors which are not used
through a table which is set up by a particular

by
job.

aDDS may be redirected

If a job has set up a table of trap vectors for itself, then that table will
automatically be used when that particular job is being executed. The vector
tables used by other jobs will not be affected. A job set up by, even if not
owned by, a job which has set up a table of trap vectors, will use the same

table as that job, unti l it is redefined.

If the jab ID is a negative word~ then the table will be set up for the
ca lt i ng job.

The table is in the form of a long word address for each trap or exception.
They are in the following order:

$00 address atTOr
$04 illegal instruction
S08 zero divide
SOC CHK
$10 TRAPV
$14 privi lege violation
$18 trace
$1C interrupt leve l 7
$20 trap #5
$24 trap r b

$28 trap #7
$2C trap #8
$30 trap #S
$34 trap #10
$38 trap #11
$3C trap #12
$40 trap #13
$44 trap #14
$48 trap #15
$4C end of table

All interrupts on the al are auto-vectored, therefore there is no treatment of
the 68008 vectored interrupt traps. Interrupts generated by the al internally
are level 2 auto-vectors: the interrupt handling mechanism includes the
facility for detecting an interrupt on the EXTINTl [external interrupt, active
low) line in the al's expansion port. [See section 11.1 for details of the
interface to the relevant hardware).

It is also possible to generate a level 7 [non-maskable) interrupt: the
treatment of this can also be redirected on a per-job basis. Pressing
CTRl-AlT-7 on the keyboard generates a level 7 interrupt and also resets all
communications with the IPC: a suitable interrupt handler could be written to
perform a warm start on the system to allow partial recovery from a crash.

2.4 Start-up

The first thing that ados does when the system is reset is to execute a RAM
test. This test determines the amount of contiguous RAM present, and if there
is any RAM failure, hangs up the machine. If the screen goes white a failure
in the first memory test pass has occured which is likely to be ~ real memory
failure. If the screen goes green then a failure in the second memory pass
has occured which indicates some problem with memory refresh cr addressing.

ados then initialises the system variables, the system menagement tables, and
the SuperBASIC area.

Page,13

The address SCOOO is then checked by Odos for the characteristic longword
$4AFB0001: if this is found, Odos links in the SuperBASIC procedures
contained in the ROM, prints cut the name of the ROM, and performs a JSR to
its initialisation point [details of the correct format of the ROM are feund
in section B.o on ROM device drivers]. It is perfectly in order for the code
in this ROM to take over the machine completely and never return to the
system, far example if another operating system were being booted~

ados then does the same for the other ROMs in the expansion sLots.

If all of these ROMs return control to Qdos, the next action is to try to open
a device driver "BOOTH: if -cnlS is found, its contents are loaded as a
Super-BASIC program and executed. If no device driver "800T" has been linked
in, (ldos attempts to find a file "MOV1_BOOT" and load and execute its contents
as a SuperBASIC program. If both of these attempts fail, Odos starts up the
SuperBASIC interpreter with an empty program memory.

Page.14

3.0 MACHINE CODE PROGRAMMING ON TrlE QL

Four types of machine code ara available to program the QL, each being used to
perform qUit_8 different operations: iobs J SuosrBasic procedures and
functions, ta-sks f and the operating system or extensions to it. Thus there
are SeveraL differences in both the farm in which they are written, and the
way in whicb they are treated by Odos.

3.1 Jobs

Most application programs written in machine code or compiled code will be in
the form of jobs. A job is an entity which has a share of machine resources:
it has a priority which allows it to claim time-slots of CPU activity, and it
has a fixed-size area of memory where data and code can be stored: code
normally starts at the bottom of the area, and data at the top. This area is
Located somewhere in the transient program area.

Note that the command interpreter is itsalf a job but with the exceptional
characteristic that its deta area is expendable.

A job also has the ability to own I/O channels or other jobs. There is no
protection between jobs under Qdos, so that channels are available for use by
all jobs. Ownership simply implies that when the owner of a channel or job is
deleted, the owned channel or job is deleted also (this process continues
recursi vely) •

Jobs have three well-defined states: they are active, sharing CPU resources
with other jobs; suspended, for example, waiting for I/O or another job; or
inactive, occupying memory but not capable of using CPU resources.

The priority of a job Can be zero, in which case it is suspended, and does not
consume CPU time. It can in fact be suspended for its entire lifetime and
never execute at all, which would be the case if it was simply used as a means
of obtaining some memory into which data could be loaded. A job at any other
priority level is active.

When a job is started, two parts of its area of memory have defined meanings:
the bottom of the code area, and the stack, which is at the top of the data
area. It is the programmer's responsibility to set up the bottom of the code
area, which should be in the following form for use by Qdos utilities:

BRA.L
OC.W
DC.W
OC.W
DC.W

JOB_START
o
$4AFB
JOB_NAME_LENGTIi
'Name.of job'

JOB_START
>I<

>I<
Code begins execution. here (assuming that the start address defined
when the job was created was zero)

Page 15

On the first occasion that a job is activated, [AS) points to the base of the
job area, [AS,A4) pOints to the bottom of the data space, and [AS,A5J points
to the top of the job ares. There may be same information on the stack, which
will ba in the following form: (A7) points to the number of channels which
have been opened for the job before it was activated; above this is a
sequence of longwords holding the channel lDs, and above these are a command
string which may have been passed to the Job. It is the programmer's
responsibility when starting a job to set up this information: the SuperBASIC
EXEC, EXEC_W commands set a job up without setting up the stack except for a
word value of zero indicating channel IDsA The utility EX produces the full
stack format and ~s available in QL Toolkit. Any utilities produced by
Sinclair are compatible with this form.

[AS ,A5) ____ ------------
1 Command string 1
1----------------1
1 Channel ID 1

Channel ID 1

1
1

1 Channa l ID 1
1--------------1

[A7) ___________ 1 Number of Channel IDs 1
1---------------1
1 1
1 1
1 Data area 1
1 1

[AS ,A4J 1 1
---1=======================1

1
1
1 Code area
1
1
1----------------
1 Job name
1----------------
1 $4AFB
1 -------
1 DC. W 0

[ASJ _____ I BRA.L JOB_START

Note that the normal sequence in Qdos is as follows:

1. reserve space for a job;
2. load its cade in;
3. open its channels;
4. activate it.

Execution begins at an address specified when the job was
normally specified as zero, which is why the first thing
a BRA.L instruction to the entrypoint of the code.

created. This Is
in a job is normelly

Since Qdos cannot give guarantees as to where a Job will be loaded, it is
usual to write jobs as position-independent code, although it is possible to
avoid this constraint if a special relocating loader is used after the space
for the job has been allocated.

Page '16

The system job table holds information about the jabs within the system. The
system variabLe SV_J88AS points to the basa of the job table, and SV_JBTOp
points to the top. The table is a series of longwords each of which pOints to
a job control block: the contents of this are described in section 17.5. The
job is identified to the system by its Job ID: this is a lcngword consist_ing
of a word giving its position in the job table (in the lesst sign fieant
word), and a word of tag allocated by the operating system when the ob is
created (in the most significant word).

ihe traps that may be called relating to Jobs are as follows:

MT.INF
HT.JINF
HT .CJOB
HT.JOB
HT .RJoB
HT.FRJoB
Hi .FREE
HT.TRAPV
HT .SUSJB
HT .RELJB
HT.ACTIV
HT .PRIOR

returns the current job ID, plus miscellaneous information.
returns the status of a job
creates a job
returns information on a job
removes an inactive job
forces removaL of a job [whether inactive or not]
finds the Largest space avaiLabLe for a job
sets the trap-vector tabLe for a job
suspends a job
reLeases a job
acti vates a job
changes the priority of a job

A j ob term; nates i tse L f by ca L Ling HT .FRJoB wi th its own j ob ID [or -1, whi ch
aLways refers to the current job] .

3.2 SuperBASIC Procedures And Functions

The SuperBASIC command interpreter is job number zero. It behaves
other jobs in most respects, with the important exception that
speciaL data area which is expandabLe, and may be moved without the
of the interpreter. This area is Located immediateLy beLow the
program area.

Like aLL
it owns a
know Ledge
transient

Machine code procedures.and functions which are added to SuperBASIC appear to
the user to be identicaL to those which are buiLt into the ROM. From the
user's point of view they are routines which are executed from within job
number zero, but which have certain constraints on the way they are coded.

The most important constraint is that A6 is used to point to the [moveabLe]
base of the SuperBASIC data area. The system may move the area and change the
vaLue of A6 between instructions without the knowLedge of the interpreter,
therefore A6 must not be modified within the procedure or function, and its
vaLue must not be stored or used in caLcuLation. This constraint may be
side-stepped by entering supervisor mode, but A6 must then be restored on exit
back to USer mode [The processor is in user mode when a procedure or function
is entered]. The stackpointer A7 must of course be restored to its original
value before exiting from the procedure.

On exit from the procedure, an error key is passed to the interpreter in oo.l:
this must be set to zero if there was no error. The procedure or function can
then be exitad using an RTS statement.

Page 17

If machine code procedures or functions are to be used either recursively or
in recursive Super8A.SIC procedures, they must obey the usual constraints of
having no Local variables and no self-modifying code.

Machine code procedures and functions ara normally loaded into the resident
9rQc~dur8 arsa above the transient program area. This area can only be
expanded or deleted when the transient program area is empty, which is
normally immediately after the machine is booted.

Trap #4 is the ene special trap which relates to SuperBASIC procedures and
functions. This trap is used to make the addresses passed to an I/O trap
relative te AS, which is necessary when working with the SuperBASIC variables
area. It only affects the following trap, and must therefore be called before
each trap whose addresses are to be modified.

Details of parameter passing, function returns and other useful information
about the SuperBASIC interface are given in section 9.0.

3.3 Tasks

Tasks are special pieces of code invoked under interrupt, usually as part of
the physical layer of a device driver. They obey special rules according to
the precise conditions under which they are called: these rules are described
in the sections on device drivers (sections 6.o-S.oJ. The important
restriction on tasks is that they must not allocate or release machine
resources: this should only be done from within a job, Or within the access
layer of a device driver.

3.4 Operating System Extensions

Some parts of user-defined device drivers do not fit into any of the above
categories: they are special routines called from within a job via the Qdos
Input/Output sub-system (see section 6.oJ. These routines have their own
rules, and these are described in the sections on device drivers (sections
6 .O-S .0J .

• pa

4.0 MEMORY ALLOCATION

Memory is allocated differently in each area of the Qdos memory map.

'" Memory in the resident procedure area is allocated using the traps
MT.ALRES and MT.RERES.

Memory in the transient program area is allocated by the mechanisms
described in section 13.0 for creation and deletion of jobs. The
vectored routines MM.ALLoC and MM.LNKFR may be used within a job to
perform primitive heap allocation inside that job's own data area.

*

Page 18

Memory in the SuperBASIC area is alLocated by various mechanisms.
The traps MT.ALBAS and MT.REBAS are used by the interpreter to change
the size of the anti re are8, but are net narm-all-y uSed by anything
else. The v8ctcred routine BV.CHRIX is used to allocate space on the
arithmetic stack: the interpreter itself cLeans up this space on
return from a procedure or function. Sp-ace in the remaining part-s of
the SuperBASIC area is usually allocated by the vsctored routines
being used to perform the operations that require the space, so that
this allocation is invisibLe to the user, execept that it usually
results in a modification of the value of AS.

Memory in the free memory area is not allocated or deal located by the
user, except by the slave block mechanisms defined in section 7.0 on
directory device drivers.

Memory in the common heap is allocated and released by the traps
MT.ALCHP and MT.RECHP. The area allocated in this way by a job is
released
accessed
MM.ALCHP

when that job
from withi n

and MM.RECHP.

is deleted. The same mechanisms can be
device drivers via the vectored routines

4.1 Heap Mechanism

The mechanisms for allocating and releasing heap space are common to various
routines. They are as follows:

A heap is an area of memory which contains a linked list of used heap items,
and a linked list of free heap items. Each heap item is an a rea of memory
(which is a multiple of 8 bytes long), together with a pair of longwords: the
first is the length of the heap item, while the second is a pointer (relative
to itself) to the next heap item in the list. The use of relative pointers
ensures that heaps may be moved.

A heap is set up by linking an area of ram into a non-existent heap (free
space pointer=O). A heap is expanded by linking an area of ram, preferably
but not necessarily, contiguous with the current top of the heap, into the
heap.

Provided the user code Can remember the length of a heap item, all of the
memory in it. may be used by the code. On allocation of the heap item, the
first long word holds its length, and so, if desired, this may be retained by
the use r code.

The user code requices to keep one pointer to the first free space item in the
heap. This is a long word, and is relative. When the heap has no free space,
either because it does n~t exist, or because it is full, this pointer is zero.

ReleaSing a heap item adds it to the list of free space items within the heap,
and consolidates it with adjacent free spaces where appropriate.

5 .0 INPUT/OUTPUT ON TriE III

A QL program uses I/O by accessin
deyic p driver for the appropr
code which can perform low-level

Page 19

the Qdos The lOSS in turn accesses the
ate device. The device driver is a piece of
/0 routines for a particular device: that

device may correspond to a piece of hardware, such as a serial
be some notional device occupying a piece of memorYr such as a
a communication channel between jobs.

port, or it may
QiQ..§., wh i ch i s

G-L I/O is performed through the lOSS using an liD channel. The applications
program opens a channel by passing a device name to the ross, which returns a
channel ID. The IOSS and the built-in device drivers have the ability to
recognize qualifiers appended to the actual name of the device which can
direct the open operation in particular ways, such as identifying a file name,
or selecting some hardware option. The program then uses the channel ID to
identify to the lOSS which channel it wishes to access when performing read or
write operations on it. It can also close the channel, passing the channel ID
to the lOSS. There may be several channels open which use the same device
driver, such as multiple screen windows, or microdrive files. For this
reason, all the built-in drivers are re-entrant, as must be the user-defined
drivers if they are to have the same capability.

The III ROM contains drivers for several devices such as screen windows, serial
ports, pipes, microdrives, and so on. The user can add his own device drivers
for pieces of add-on hardware, or simply for additional functions with the
existing hardware.

Note that a channel ID is not the same thing as a SuperBASIC channel number
[denoted by #expression): the latter is the index of an entry in the
SuperBASIC channel table which includes a channel ID. See sections 17.4 and
17.7 for details of the channel table.

5.1 Serial I/O

All device drivers have, at the very least, the capability to perform serial
I/O: that is, the operations of reading bytes, writing bytes, and testing for
pending input. Serial I/O is completely byte-oriented - unlike many operating
systems there is no inbuilt record structure, which means that the user is
free to superpose his own record maintenance in whatever form he wishes. I/O
which is purely serial is completely redirectable: when different devices are
being used, the device name passed to the channel open trap is the only thing
that changes.

The lOSS supports one control character only, this being the newline
character, which is flSCII 10 [$OAl. Whilst this has the disadvantage that one
cannot directly stor& files of graphics commands which can be retrieved by a
simple copy, it does have the advantage that files containing arbitrary
sequences of bytes cannot do irretrievable damage to the system by being
copied to a device for which they were not intended. The serial driver has
the option of supporting ASCII 13 as a newline, and ASCII 26 [CTRl-Z) as an
end of file marker.

All serial I/O calls support a time-out feature, which may be zero [return
immediately), indefinite [wait until the operation is complete), or finite
[wait until the operation is completa, or for a set time, whichever is the
sooner). This last feature makes it very easy to write code which, for
example, puts up e menu only if the user hesitates.

The lOSS supports the following caLLs for seriaL I/O:

ID.OPEN
ID .CLOSE
IO.PENO
IO.FBYTE
ID .FLINE
IO.FSTRG
!Q"SBYTE
IO.SSTRG

opens a channel
closes a channel
tests for pending input
fetches a single byts
fetches a line of bytes terminatad by newL1na [ASCII 10j
fetches s" string of bytes
sands a single byte
sends a string of bytes

Page.20

ihe fetch and sand traps have several special meanings wnen used in
conjunction with screen or console channeLs: for a more datai led description
of these, Sae section 15.0 on Screen I/O.

For the fetch byte and fetch string traps, characters read from the keyboard
are not echoed in the associated window, and cursor handLing is Left to the
appLications program.

5.2 FiLe I/O

ados fiLes appear to the appLications program as arrays of bytes on a physical
device, with an associated file pointer which gives the "current position" in
a fiLe. A file aLso has a header, which is normaLLy 64 bytes Long containing
information about the file such as its name, length, etc. Further details
concerning the format of the fiLe header are given in section 7.0 on Directory
Device Drivers.

The open caLL to a fiLe system device supports severaL modes: oLd
(exclusiveJ, oLd (sharedJ, or new (exclusiveJ. New (overwriteJ mode has a
slot alLocated in the open keys, but is not currentLy supported for
microdrives. In addition, a special open key indicates that it is desired to
open the directory of the medium for reading rather than a particular fiLe;
the directory cannot be expLicitLy written, but is maintained by the device
driver when open caLLs and deLetions are made.

ados supports a system of slaving, whereby 512-byte bLocks of data are
buffered in the free memory area (see section 4.0J: aLL unused memory being
taken for this area. The fiLing system may return from a write operation when
that operation has onLy been performed on the sLave bLock concerned; ados
wiLL later force the system to convert that sLave block into a true copy of
the data on the physicaL device. As a resuLt of this mechanism, add-on fiLing
devices normaLLy support 512-byte logicaL bLocks: however this blocking
system is transparent to the applications program. A singLe sLave block table
is shared by alL th~ directory drivers which want to use it to improve their
performance. ~

In addition to the serial I/O operations described above, ados supports the
foLlowing operations for fiLe-system devices:

ID • FORMT
IO.DELET
FS .CHECK
FS.FLUSH
FS.POSAB
FS.POSRE

formats a sectored medium
deLetes a fi le
checks alL pe~ding operations on a fiLe
flushes buffers for a fiLe
positions the fiLe pointer absolutely
positions the fiLe pointer reLativeLy

FS.MDINF
FS.HEADS
FS.HEADR
FS.LOAD
FS.SAVE

gets information about the mounted medium
sets the file header
reads the file header
loads a file into memory
saves a file from memory

Page 21

The FS.FLUSH and FS.CHECK command are subtly different: FS.FLUSH ensures that
all write operations are compLete~ whereas FS.CHECK ensures that all write and
read operations [including prefetchesj are complete.

5.3 Screen And Console I/O

The keyboard and screen devices are .treated in a special way by Qdos, and have
a large number of functions in addition to those available for purely serial
I/O devices. Two types of device are supported: scr [for screen), which is a
screen window, and con [for console), which is a screen window with an
associated keyboard channel. The three chennels #0, #1 and #2 which are
opened by SuperBASIC are all console channels.

5.3.1 Display Modes -

The QL has two display modes [see the Concepts manual for details). The
display mode can be set or read using the MT.DMOOE trap, but as this trap
clears all screen windows, it should be used with great Care. A program Can
also find out whether the user selected TV or monitor at switch-on by
inspecting the value of the system variable SV_TVMOD.

There are two main coordinate systems used for screen I/O: these are the
graphics coordinate system and the pixel coordinate system [see the Concepts
manual for details). Note that in 256-pixel mode and for several commands in
512-pixel mode, the least significant bit of a dimension in the x-direction is
ignored, so that a given pixel address refers to the same location in both
modes. Some traps refer to character coordinates: these are based on the
pixel coordinate system but are scaled by the current character spacing for
the window.

5.3.2 Window Properties And Operations

A window is an area of screen which may be in any position on the screen,
subject to the restriction that its x-position must be an even number. A
window may be of any size that does not run off the edge or bottom of the
screen, subject to-the same restriction. Windows may overlap, but the system
does not store or -retrieve the area of overlap, it being the user's
responsibility to ensurL that any information is not lost or garbled.

Each window will have its own particular set of characteristics: a border
width, a border colour, a paper colour, a strip colour, an ink colour, a
cursor position, a curSor increment, a flag which says whether the cursor is
suppressed, a pair of font pointers, information about newline treatment, and
graphics information. Details of the window definition block are given in the
section 15.0.

The spacial traps for dealing with windows are as follows:

SD.PXENQ.
SD.CHENQ.
SD~80RDR

SO. WiJEF
SD. CURE
SD.CURS
SD.SCROL
SD • SCRIP
SD.SCRBT
SD.PAN
SD.PANLN
SD.PANRT
SO • CLEAR
SD.CLRTP
SD.CLRBT
SD.CLRLN
SD.CLRRT
SD.RECOl
SD.SETPA
SD.SETST
SD.SETIN
SD.FILL
SD.SETMD

returns window information in pixel coordinates
returns window information in character coordinates
sets the border width and colour
redefines a window
enables the cursor
suppresses the cursor
scrolls a whale window
scrolls the top part of a window
scrolls the bottom part of a window
pans a whoLe window
pans the line the cursor is on
pans the right-hand end of the line the cursor is on
clears a whole window
clears the top part of a window
clears the bottom part of a window
clears the line the cursor is cn
clears the right-hand end of the line the Cursor is on
recolours a window
sets the paper colour
sets the strip colour
sets the ink colour
fills a rectangular block in a window
sets the character writing or plotting mode

5.3.3 Screen Character Output Operations -

Page 22

Newline characters receive slightly different treatment when
sent to a screen or console channel rather than to any
addition to being caused by a newline character, a newline
inserted when the cursor reaches the right-hand side of the
happens during an IO.SBYTE trap, the error code ERR.OR (for
also returned.

bytes are being
other device. In
is automatically

window; when this
out of rangel is

If the cursor
by any ca II
events:

is suppressed, the newline is held pending. It can be cleared
to position the cursor, or activated by any of the following

sending another byte or string;
changing the character size;
activating the cursor;
requesting the cursor position.

This feature allows_~he right-hand character squares to be used without
generating stray bla~k lines.

The following additional operations apply to screen character output:

SD.FOUNT
SD.SETFL
SD.SETUL
SD.SETSZ

sets or resets the character fount
sets or resets hardware flash (256-pixel mode only)
sets or resets underlining
sets tha character size and spacing

Page 23

5.3.4 Graphics Operations -

The QL can perform Line 1 arc or ellipse drawir.g on a window basis in scaled
coordinates. It also provides a primitive area flood routine. The traps are
as follows:

SD.POINT
SD. LINE
SD.ARC
SD.ELIPS
SD • SeAL:
SD.GCUR
SD~FLOOD

draws
draws
draws an
draws an

. . a pOlO ...

aline
arc
ellipse

sets the scale
move the graphics cursor
set or reset area filling

5.3.5 Special Properties Of Console Channels -

For the console device, the IO.FLINE trap behaves in a
the characters typed are echoed in the console window,
cursor keys [with or without CTRlJ are used to edit the
way. In addition, the cursor is automatically enabled.

particular
and the left
line in the

fashion:
and right
standard

An additional trap, IO.EDLIN, is provided for console channels, which invokes
the line editor on a pre-defined string. The line-editor may be exited by
typing ENTER, or by typing either the cursor-up or the cursor-down character.

The user can temporarily suspend screen output to a console channel by typing
the freeze screen character [CTRL-F5J. Output is resumed when any character
is typed, but the character is ignored for all other purposes. If a
non-indefinite time-out has been set for the suspended operation, it may
return non-complete if the screen is frozen past the time-out period.

5.3.6 Special Keyboard Functions -

Several console channels may be open at the same time. If they are used by
different jobs, it may be that more than one console channel is expecting
input at a given time. When this occurs, the user may cycle round the list of
console channels currently expecting input by typing the change queue
character on the keyboard. The cursor in the console window to which keyboard
input is currently directed will flash if it is enabled. Any enabled cursors
in other windows will be steady.

The change queue character is normally CTRL-C [ASCII 3J. It can be changed by
modifying the system variable SV_CQCH.

The keyboard maintains a type-ahead queue of seven
processor which contr~ls it. In addition to
type-ahead in the queue for each console channel.

characters
this, there

in the 8049
may be more

The keyboard auto-repeats on all keys except the keyboard change queue
character, CTRL-Space [the SuperBASIC breakJ or CTRL-F5 [the freeze screen
characterJ. However, auto-repeat will not occur unless the type-ahead queue
for the console channel to which input is currently directed is empty. The
delay before auto-repetition begins 1s held in the system variable SV_AROEL,
and· the interval between repetitions is held in SV_ARFRQ [both in multiples of
1/50th or 1/60th of a secondJ. These can be altered by a program.

When CAPSLOCK ; s pressed, the system wi Ll jump to a user-supp lied
whose absolute address is held in the system variable SV_CSUB if the
this is non-zero. This routine should restors all registers to thair
state before returning.

5.3.7 Extended Operations

Page 24

routine
value of
initial

A special trap SD~EXTOP is provided
user-supplied routine using the same
routines in the screen driver. Sea the
Traps) for a more detailed discussion of

tD allow a
environment
description

this trap.

program to invoke a
that is p2ssed to the
in section 15.0 (liD

Page 25

6.0 arms DEVICE DRIVERS

A user-suppLied Qdos device driver is a coiLec~ion of routines which allow an
applications program to oerfcrm IOSS functions on a user-supplied device in
the same way as such functions are performed on the devices built into the
system. As these routines are linked into the system1s lists in front of the
corresponding system routines, they may be used to replace the system
routines. At the very least, the device driver contains a set of routines for
opening a channeL, clOSing a channel, and performing serial I/O on that
channel: these routines are calLed via the lOSS as part of the job that is
performing the I/O. The driver may also include one or more tasks, that is,
routines performed asynchronously with the calling job, usually under
interrupt.

Such tasks, which are known as the physical layer of the device driver,
normally communicate with the rest of the device driver, which is known as the
access ~, using asynchronous queues. These queues are usually polled by
the task at regular intervals, either on every occasion the scheduler is
entered, or on every 50/60 Hz polling interrupt.

Drivers for file system devices use a slightly different, and more general,
mechanism: this is described in section 7.0.

Both drivers and tasks are linked in to
system. The following traps are used
lists:

lists provided by the operating
to add and remove items from those

MT .LXINT links in an externa l interrupt service task
MT. LPOLL links in a 50/60 Hz polling service task
MT . LSCHO links in a scheduler loop task
MT. LIDO links in a device driver to the I/O system
MT. LOO links in a directory device driver to the file system

MT .RXINT, MT.RPOLL, MT .RSCHO, MT.RIOD and MT.ROO remove these

The QL provides several uti lity routines which are useful for
commonly performed in device drivers, such as decoding
performing queue operations, etc.

6.1 Device Driver Memory Allocation

links.

various actions
a device name,

Device drivers allocate memory in two areas: the device driver definition
block and the channel definition block. The device driver definition block
belongs to the driver itself, and is allocated by the code which sets up the
driver when it is initialised and linked into the various lists. The channel
definition block bel~ngs to each I/O channel, and is allocated by the driver
itself when a channel is opened. Various parts of the channel definition
block are thereafter used by the IOSS for its own purposes.

In theory, the acceSS layer can ellocate space on the heap at other times: in
practice this is not usually required. The whole system can be made
re-entrant to allow several channels to be open with the same device driver
and the same device driver definition block, but with different chennel
definition blocks.

Page 26

Note that the system will certainly crash if the area of a channel definition
block is dealLocated and used for something else before th-8 channel is closed,
or if the area of e device driver definition block is deaL Located and used for
something else befDre the device driVer is removed from the system's lists~

for example if the device driver definition block is in a transient program
which is force-removed. This possibility can be obviated by allocating the
block in the Common heap with a job number of zero r or by alLccating it in the
resident procedure area.

Tasks must not allocate or reLeaSe memory: this must be done for them by the
acceSS layer, or by the device driver initialisation code.

6.2 Device Driver Initialisation

The code to initialise a device driver must first allocate the space for the
device driver definition block, usually by allocating some space in the
resident procedure area, although any of the normal allocation mechanisms may
be used.

The device driver definition block will normally have the following structure,
assuming that A3 has been made to point to it:

$OO(A3)
S04(A3)
S08(A3)
$OC(A3)
$10(A3)
$14(A3)
S18(A3)
S1C(A3)
S20(A3)
$24(A3)
$28(A3)

Link to next external interrupt routine
Address of external interrupt routine
Link to next poll interrupt routine
Address of poll interrupt routine
Link to next scheduler loop routine
Address of scheduler loop routine
Link to access layer of next device driver
Address of input/output routine
Address of channel open routine
Address of channel close routine
Any further workspace required for the device driver

The initialisation code should fill in the addresses of the open, close and
I/O routines, together with those of any of the routines for tasks that it
will be employing. It should also fill in any preset data required in the
remainder of the workspace.

Finally, the link routines described above should be called to include the
driver in the operating system's lists.

Note that the structure of the first 24 bytes of the device driver definition
block is not mandatory; however it is deSirable from the point of view of
conSistency that it be kept the same. The comments in later sections about
the base of the device driver definition block being passed to the driver are
only valid if the aBove structure has been used.

6.3 Physical Layer

The phySical layer tasks are normally the onas which perform actual I/O under
interrupt or polled control. They usually take data out of queues or put data
into queues, the other and of such queues being maintained by the access
layer.

Page 27

When the operating system calls
passes the task a standard
valuEs are as follows:

one of the tasks in the
set of values in Some of

physical layer, it
the regi sters. These

03 Number of SO/60Hz interrupts since last scheduler caLL
(scheduler loop onlyj

A3 Pointer to base of device driver definition bLock
AS POinter to system variables
A7 Supervisor stack - routines may use up to 64 bytes

6.3.1 Externa L Interrupt Tasks

An external interrupt task must check its own hardware to determine
the interrupt was for itself or for some other driver. It may also
clear the sourCe of tha interrupt at that point. If the interrupt was
itself, it should return.

6.3.2 Polling Interrupt Tasks

whether
need to
not for

Polling interrupt tasks should only be used when critical
are requi red. In common with the external interrupt tasks,
atomic operations in the rest of the system, such as access
same driver, so they should be used with great care.

timing operations
they can interrupt
layer calls to the

6.3.3 Scheduler Loop Tasks -

Calls from the scheduler loop do not interrupt atomic tasks. This means that
operations such as allocating or releasing memory can be performed safely_
Note that it is quite common for the Same routine to be included both in the
scheduler loop and in the external interrupt list.

Scheduler loop tasks are called at around 50/6oHz when the machine is busy,
and more frequently if the machine is idle.

All physical layer calls return with RTS. 00 to 07 and AD. to A6 inclusive may
be smashed.

6.4 The Access Layer

The access layer consists of three routines: the channel open, the channel
close, and the Inj;JUt/Output· routine. These routines are called for the
appropriate driver by the lOSS in response to a user's trap instruction. In
the caSe of the channel open, the routine is called in turn for each device
driver in the machine unti l a driver'S open routine returns correctly to
indicate that it has recognised the device name. Due to this mechanism, an
incorrect open routine may crash the whole system when an open to any devica
is attempted, whereas the other routines are only invoked in response to the
particular device being used.

Page 28

For ell access layer calls, the values of A3, AS and A7 are the same as for
t<ne physi ca l layer. The other reg; stars have di ffarent meani ngs, as described
below in the sections for the individueL types of call.

All access layer calls return using RTS.

6.4.1 The Channel Open Routine -

When the channel open routine is called via the IOSS, the following registers
are set in addition to A3, AB and A7 which are as described above:

AD address of the device name
03 accesS code as defined in the ID.OPEN trap

The open routine should perform the following operations:

First, decode the name; the utility IC.NAME, which is described in section
16.0, will normally be used for this purpose. Return with ERR.NF in 00 if the
name was not recognised by this driver, or with ERR.8N if the name was
recognised, but some of the additional information was incorrect in value or
format.

Then, if the device cannot
prevent another channel
retu rn ERR. IU.

be shared, check whether the device is in use and
from being opened to it. If the device is in use,

Finally, allocate some space for the channel definition block. Any buffers or
working area required for each channel are normally allocated in the common
heap. Return with ERR.oM if there was not enough memory to do this.

On return from the open routine, the following should be set:

AD address of channel definition block
A7 stackpointer returned to its value at entry
DO error return code [zero for a successful open]

The remaining registers may be smashed.

6.4.2 The ChanneL Close Routine

When this routine is entered, in addition to the usual velues of A3, A6 and
A7, AD points to the base of the channel definition block.

The function of the"cLose
the channel definition
driver definition block ,s

routine is
block and
tidy.

simply to release the memory taken up by
to ensure that everything in the device

Under some circumstances, it. may not be possible to close the channeL
immediately because there ere bytes waiting to be transmitted by the physical
layer. In this case, the physical layer must contain a schaduler loop task,
and the close routine shouLd set a flag far the physical layer to camp late the
ralease of the memory an the next invocation of that task in which it is
passible to do sa. When this happens, it is usually nacessary to build in a
special mechanism to cope with the undesirable avent of a program closing a
channal to a particular device, and then re-opening it immediataly only to

Page 29

receive an I'in use l' error because the closed channel has not yet been cleared.

The close routine should return wit-h zero in DO, as it is assumed that a close
routine cannot fail. The other registers {apart from A7i may be smashed.

6.4.3 The Input/Output Routine -

The I/O rout; ne is ca t led once when an I/O ca II is made, and then J un Less the
time-cut was set to zero, on every subsequent scheduler loop until the
operation is complete or the time-out has expired.

In addition to the usual values of A3, AS and A7, the following registers are
set:

DO The trap code passed to the lOSS [0 in top three bytes)
01 Additional information as defined in the trap calls in section 15.0
02 Additional information as defined in the trap calls in section 15.0
03 Zero on the first entry for a given trap call, -1 thereafter
AD Base of channel definition block
A1 Additional information as defined in the trap calls in section 15.0
A2 Additional information as defined in the trap calls in section 15.0

The I/O routine should return ERR.Ne [not complete) if it cannot complete the
operation immediately. If a string operation has been partially completed,
the values in 01 and A1 [number of bytes transferred and buffer pointer)
should be set appropriately so that the operation can continue on the next
try. DO should be zero on return if the operation has been completed
oorrectly. Registers 02 to 07 may be smashed.

Since most of the code for handling serial I/O is common to all device
drivers, the I/O routine usually calls one of the utility routines ID.SERa. or
IO.SERIO [which are described in seotion 16.0). IO.SERa. assumes that the only
function of the access layer is to move bytes in and out of a pair of queues
pointed to by fixed positions in the ohannel definition block, while IO.SERIO
assumes that the operations required of it can all be made up out of three
primitive routines for sending one byte, fetching one byte, and checking for
pending input, such routines being supplied by the writer of the device
driver.

Note that channels are assumed to be bidirectional; it is the responsibility
of the I/O routine to trap an operation in a direction that is not allowed.

Note also that output operations which appear to the user as
merely completed the access layer call correctly: there being
in which the user can ascertain whether the physical layer
completed the opera~ion.

" -

complete have
no general way
has in fact

Page .30

7.0 DIRECTORY DEVICE DRIVERS

Drivers for devices which havE a dirEctory and form part of the filing system
have 2 somewhat extended set of functions. For directory device drivers;
there ere three blocks in which memory is allocated, rather than two: these
are the di rectory driver l inkaoe block, the physical definition block and the
channel_ definition block.

There is one directory driver linkage block far each dir-ectory driver: it is
an extended form of the device driver definition block as found in a
non-directory device orlver. The block contains information about how to use
the driver~ together with the links in the operating system1s lists.

Each di rectory driVer may control up to 8 drives [numbered 1 to 8). Each
drive has one physical definition block: this contains the drive number and
information about the medium.

For each I/O channel that is open, there is an open channel definition block.

The file system is assumed to be composed of 512-byte blocks: thus a byte
within a file is addressed by the lOSS by a block number and a byte number
within that block. It is of course possible to have a different physical
block Size, but the mapping of the IOSS structure onto the physical structure
will be less convenient.

Each file is assumed to have a 64-byte header (the logical beginning of file
is set to byte 64, not byte zero). This header should be formatted as
follows:

$00
$04
$05
$06
$OE
$34
$38
$3C

long
byte
byte
8 bytes
2+36 bytes
long
long
long

file length
file access key (not yet implemented - currently always zero)
file type
file type-dependent information
file name
reserved for update date (not yet implemented)
reserved for reference date [not yet implemented)
reserved for backup date (not yet implemented)

The current file types allowed are:
1, which is an executable program;
of fi le type 1, the fi rst longword
default size of the data space for

2, which is a relocatable object file;
and 0 which is anything else. In the case

of type-dependent information holds the
the program.

7.1 Initialisation Of A Directory Driver

The initialisation routine should firstly allocate room for the directory
driver linkage blo~k, and then write into it the information about the driver
routine addresses, the length of the. physical definition block required for
each drive, and the driv~ name. Note that for directory drivers, the decoding
of the device name is performed by the lOSS, not by the open routine in the
device driver as in non-directory drivers: the functioo of the open routine
is to search for the file name within the given drive. The linkage block may
be allocated in the resident procedure area if the driver is resident there,
but will usually be in the COmmon heap. The system will crash if the linkage
block is overwritten without the driver being unlinked.

Page 31

When this has been done, the traps MT.LXINT, MT.LPOLL, MT.LSCHD and MT.LDD can
be called to link the driver and any associated tasks into Qdos.

The format of the directory driver linkage block is as follows (assuming that
A3 has been made to point to it]:

SOO(A3]
S04(A3)
S08[A3]
$OC(A3]
$10(A31
S14[A3)
$18(A3)
$1C(A3]
$20 (A3]
$24(A3]
$28(A3]
$2C(A3]
530(A3]
$34(A3]
$38(AS]
$3C(A3]

link to next external interrupt routine
address of external interrupt routine
link to next 50/60 Hz interrupt routine
address of 50/60 Hz interrupt routine
link to next scheduler loop routine
address of scheduler loop routine
link to access layer of next directory driver
address of input/output routine
address of channel open routine
address of channel close routine
address of entry for forced slaving
reserved
reserved
address of entry to format medium
length of physical definition block
word-length of drive name
characters of drive name (e.g. MOV]

Note that a directory driver must have at least 40 bytes of RAM for the
linkage block.

7.2 Access Layer

The access layer of a directory driver contains five routines: the channel
open/fi le delete routine, the close routine, the I/O routine, the forced
slaving routine and the format routine.

For all directory device driver a<:cess layer calls (including open], AD points
to the base of the channel definition block when each routine is called.
However, the format of the block is somewhat different:

The first $18 bytes are reserved for the lOSS.

$18(AO] FS_NEXT long link to next file system channel
$1C(AO] FS-ACCES byte access mode (03 on open call, -Ve on delete)
$10 (AD] FS_ORIVE byte drive ID
$1 E(AO] FS_FILNR word number of file on drive
$20(AO] FS_NBLOK word block number containing next byte
$22(AO] FS_N8YTE word next byte from block
$24(AO] FS_EBLOK word block number containing byte after EOF
$26(AO] FS_EBYTE word byte after EOF
$28[AO] FS_CBLOK long pointer to slave block table for current slave

block which may hold current/next byte
$2C[AO] FS_FNAME 2+36 bytes file name
$58(AO J FS_SPARE 72 bytes spare

A1 points to the physical definition block, which is formatted as follows:

The first $10 bytes are resarved for the lOSS.

$10[A1J FS_ORIVR long pointer to eccess layer link for driver

Page .32

byte drive number
mad; urn name

$14[A1) FS_ORIVN
S16(A1) FS_MNAME
S22[A1) FS_FILES

2+10 bytes
byte number of files open on this medium

7.2.1 The Channs L Open/Fi Le De lete Routi ne

The function of the open routine depends on the access mode.
been passed to the lOSS in 03 if the open routine was called
ID.OPEN trap, or it may be a negative numbsi, which would be
routine has been entered as a result of an IQ.DELE! trap.

Th; s may
as a result
the case j f

have
of en

the

In order to understand the open routine, it is necessary first to understand
the way in which Qdos handles device names. When a device name is passed to
the lOSS as a result of an open or delete call, the lOSS looks for a match in
its lists of device drivers and directory device drivers. The matching
mechanism for non-directory device drivers is defined within the open routine
for that driver. The matching mechanism for directory device drivers is as
follows. The first characters of the name are checked against the drive name
in the directory driver linkage block [which is put there when the driver is
initialised), and these are expected to be followed by a drive number between
1 and 8, followed by an underscore, followed usually by the filename. If a
match is found, the file system looks to see if there is a physical definition
block for that drive already in existence. If there is not, a physical
definition block is created in the system's table of physical definition
blocks [the drive ID in the channel definition block is an index to this
table). Note that the file system has no knowledge of whether a drive is
actually connected, and will set up the definition block regardless.

The lOSS then checks to see if thi s is the second or subsequent open to a
shared file: if this is the case it generates the complete channel definition
block itself, setting FS_N8YTE to $40, and copies the remalnlng information
from the channel definition block for the first open. The directory driver's
open routine is not called. Otherwise, the lOSS calls the open routine,
passing it the file name in the channel definition block.

On entry to the open rout; ne, the following registers are set:

AD base of channel definition block
A1 base of physical definition block
A3 base of directory driver linkage block
AS base of system variables

The channel and physical definition blocks are all set to zero except for the
following, which are filled in by the lOSS:

FS_NEXT link to next file system channel
FS_ACCES acceSS mode
FS_DRIVE drive ID
FS_FNAME file name
FS_DRIVR pointer to directory driver access layer
FS_FILES number of files open on this drive (maintained by lOSS)

In the Case of a device with removable media, the open routine should find out
the name of the medium and install it in FS_MNAME. It should also look at the
access mode to find out which operation is required. If the required
operation is delete, it should perform that operation and return, but if the

Page ,33

required operation is another sort of open, then it should filL in the
appropriate portions of the channel definition block, namely FS_FILNR,
FS_EBLOK, Fq_EBYTE,FS_NBLOK and FS_NBYTE. FS_CBLOK is a pointer to the slave
block table which may be filled in as an indication to the I/O routine that
the block it is looking for may be slaved there. The I/O routine must check
this however, normaLly by searching the slave table.

The ross wilL free the channeL definition block an exit from the open routine
if the action was a delete or if the open routine returns an error key in DD.

The maintenance of the directory structure of the medium is the responsibility
of the open and cLose routines - the ross plays no part in this. Equally, the
open routine is responsibLe for understanding the meaning of the access mode
end reacting accordingly.

The open routine
retu rni ng. 00
preserved.

may smash registers D1 to D7 and A1 to A5 inclusive before
is the error key, and the remaining registers should be

7.2.2 The Channel Close Routine

As far as the lOSS is concerned, this routine behaves in
non-directory device driver. It;s of course necessary
to maintain the directory structure of the medium, so
normally be rather more complicated.

the same way as for a
for the close routine
its operation will

The close routine for a directory device driver has two additional functions:
it must unlink the channel from the list of files open, and must decrement the
FS_FILES field in the physical definition block, which gives the number of
files open on the medium. Suitable code for performing these operations and
ending the close routine is as follows:

* get address of physical definition
MOVED. #0 ,DO
MOVE.B FS_DRIVE(AO) ,DD
LSL. B #2,DO
LEA.L SV-FSDEF(A6) ,A2
MDVE.L (A2,DO.W) ,A2

* now decrement the file count
SUBD..B #1,FS_FILES(A2)

* now unlink the file

list

LEA FS_NEXT(AD) ,AD
LEA SV-FSLST(AS) ,A1

MOVE.W
JSR
LEA
MOVE.W
JMP

UT.UNLNK,A4
(A41
-FS • NEXT (AO) ,AD
MM.RECHP,A4
(A4)

block into A2
top three bytes must be clear
get the drive ID
convert it to a table offset
get base of PDB table
get address from (base+offset]

get address of link pointer •.•
and pointer to start of linked

routina to unlink an item

restore AO to base of channel def
routina to release channel def space
call it, and axit from the close

The close routine must also initiate the process of tidying up any
blocks remaining for that channel. It need not force tha slave blocks
made into true copies itsalf, but it must be guaranteed that the copying
happen without further intarvention by the calling program.

slave
to be
will

Page 34

7.2.3 The Input/Output Routine-

This routine also appears to the TOSS to be identical for both directory and
non-directory device drivers, though onCe again the routine is usually rather
more complex for most normal file system devices. The main difference is that
the I/O routine for a random access file system device must take into account
the current block and position as provided by the lOSS, since these may have
been updated by the TOSS 65 a result of a file pointer positioning trap.

7.3 Slaving

The area of memory between SV_FREE and SV_BASIC is used by the filing system
as temporary storage for file slave blocks and for the slave block table. A
slave block is a bLock of 512 bytes of data. The slave block table is a table
of a entries whose start point is held in the system variable SV_BTBAS anrl
whose top is held in the system variable SV_BTTOP; the system variable
SV_BTPNT points to the most recently allocated slave block table entry. The
address of a slave block, relative to the base of system variables, is equal
to 512/8 times the offset of the corresponding entry in the slave block table
from the beginning of that table.

Currently, only the first byte of each slave block table antry is used by Odos
itself: the remaining bytes are available for use by the driver. This byte
is divided into two four bit nibbles. The most significant nibble contains
the drive identifier [0 .• 15), and the least significant nibble is a code
indicating the status of the block. The byte is formatted as follows:

$00 unavailable to filing system
$01 empty block
$x3 block is true representation of file
$x7 block is updated, awaiting write
$x9 block is awaiting read
$xB block is awaiting verify
x is the drive ID for this file

For microdrives, the remaining space in each slave block table entry is laid
out as fa llows:

BTYRIDR 01
BT_SECTR 02
BT_FILNR 04
BT_BLOCK 06

byte
word
word
word

available for slaving algorithms
physical sector number*2
fi le number
block number within the file

It is left to the device driver to decide what the slave blocks are used for
but it must be prepared to release a slave block if requested to do so by the
memory manager. This is done by calling the driver'S forced slaving routine
with the following parameters:

A1 points to the base of' the offending slave block
A2 points to the physical definition block
A3 points to the base of the directory driver linkage block

Regi sters DO to 03 and AD to A4 inclusive may be smashed. There may not be an
error return to this routine.

Typically the slave blocks are used to buffer data being written to a device,
tha actual writing being carriad out by an asynchronous task.

Page ·35

Searching for an empty slave block involves performing a linear search through
the slave block table, usually starting from SV_BTPNT or SV_BTBAS. The status
of each entry in the tsble must be checked and only those blocks which are
empty Or true representations shouLd be taken. When a new block is allocated
SV_BTPNT should be updated to point to the allocated block. Allocating slave
blocks is a form of memory allocation and should only be carried out by access
layer or schaduler Loop calls.

The position in memory of a sLave block which corresponds to a slave block
table entry may be calculated using the following code:

MOVE.L A4,DO A4 is painter to slave block table entry

* form offset into slave block table, gives
* slave block no. * 8; entries are 8 bytes wide in table

SUB.L SV_BTBAS[A6) ,DO
LSL.L #6,00 multiply by 64 [8 * 64 = 512]
MOVE.L DO,A5
ADO.L A6,A5 add offset to system variable base

* A5 now has base address of slave block

7.3.1 The Format Routine-

This routine is to a large extent independent of the other routines. It is
called with the drive number in 01, a pointer to the medium name in A1, and a
pointer to the directory driver linkage blook in A3.

It should return the error code in DO, the number of good sectors in 01 and
the total number of sectors in 02. Registers 03 to 07 and AD to A5 inclusive
may be smashed.

Page 36

B.O BUILT-IN DEVICE DRIVERS

The foLlowing devices are. bui Lt in to the QL ROM:

CON_wXhaxXy_k Console I/O,
wi-ndow area nw" by "htl pixals, top left hand corner at pixel position

"x", "yU,

512x256 display

display modes).

SCR_wXhaxXy
window

SERnpz

pa ri ty •

passed in 03.

keyboard type-ahead buffer length Ilk'l characters.
The size and position are defined in terms of pixels on a

map (position 25Sx128 is the centre of the screen in both

Default COt>L448x180a32x16_12B

Screen output
definition is as for CON.
Default SCR_44Bx1BOa32x16

RS232 serial I/O
port "n",
Hp" indicates parity: E,O,M,S for even, odd, mark or space

"z" indicates protocol: R indicates raw data,
Z or C indicates that Ctrl-Z is used as an EOF marker,
C indicates that ASCII 13 is to be exchanged with ASCII 10.

Default SER1R no parity.

Serial network output

link from node "nn"

Serial network input
link to node "nn"

Job connection and synchronisation
if On" given it is an output pipe of length n bytes,
otherwise it is an input pipe connected to the channel ID

Mi crodrive fi le
MDV1 refers to microdrive "1".

Within device names, no distinction is made between upper and lower case
letters.

Page.37

9.0 INTERFACING TO SUPERBASIC

When writing SuperBASIC procedures or functions in macnlne code, there are
several things that an appLications programmer may want to do: ha may wish to
look at or modify the information held in SuparBASIC variables and arrays, he
may wish to acceSS or modify the Super8ASIC list of I/O channels, and he may
wish to reserve and use space on the arithmetic stack. He will also, of
course, wish to access the list of parameters passed to the routine and return
vaLues either to those parameters or in a function return. In order to co
this, it is necessary to understand the data structures used by the
interpreter and to amulate the interpreter's techniques for manipuLating them.

9.1 Memory Organisation Within The SuperBASIC Area

The SuperBASIC area contains twelve distinct areas:

the job header,
the SuperBASIC work area,
the name table,
the name list,
the variable values area,
the channel table,
the arithmetic stack,
the token list,
the line number table,
the program file,
the return list,
the buffer.

There are also various other stacks used by the interpreter.

The job header is located at the bottom of the SuperBASIC area, and looks just
like any other job header (see section 17.51. Immediately above this is the
SuperBASIC work area: this is an area of fixed storage used for the working
variables of the interpreter. Included in these working variables are
pointers to the other areas: the interpreter can not only shuffle these areas
around, but may also ask Qdos to change the size of the whole SuperBASIC area.

The organisation of this area is shown in section 17.3. Throughout normal
operation of the interpreter, AB pOints to the base of the SuperBASIC work
area, the whole of which may move between instructions, with a corresponding
change in AB. All the pointers are, of course, relative to AB, so that their
values need not be changed when the SuperBASIC area is moved.

The name table, the name list and the variable values area are required by the
applications programmer in order to access and/or modify SuperBASIC variables
and parameters. The"channel table is required in order to access SuperBASIC
I/O channels, end the arithmetic stack (usually abbreviated to RI stack) is a
convenient area in .which to reserve storage, end is also where parameters are
passed. The remaining areas ere not described in this document.

Page 38

9.2 The Name Table

All variables, procedure names, param~ters and even
through the name table. This is a regular table
the ent-M 8S ha ld di fferant i nrormati on accordi ng to

expressions are handled
of eight byte entries, but
the type of entry.

The entries may be as follows:

BY1;es 7-4

Value pointer
Value pointer
Va lue po i ntar
Ptr to RI stack'
Ptr to RI stack'
Ptr to RI stack'

i Value pointer I
, Value pointer ,
, Value pointer ,
I Value pointer ,
I Value pointer ,
I Value pointer I
I Value painter ,
I Li ne no in msw ,
, Li ne no in msw I
I Line no in msw I
I Li ne no in msw I
I Value pointer ,
I Value painter I
I Abs. address I
I Abs. address I

Bytes 3-2

Name pointer
Name pointer
Name pointer
-1
-1
-1
Name pointer
Name poi nter
Name pointer
-1
Name poi nter
Name poi nter
Name pointer
Name poi nter
Name pointer
Name pointer
Name poi nter
Name pointer
Name pointer
Name pointer
Name poi nter

I
I ,
I ,
I , , ,
I
I
I
I ,
I
I , ,
I
I
I

Bytes 1-0

$0001
$0002
$0003
$0101
$0102
$0103
$0201
$0202
$0203
$0300
$0301
$0302
$0303
$0400
$0501
$0502
$0503
$0602
$0702
$0800
$0900

Type

i Unset stri ng
, Unset floating point number
, Unset i ntege I'
I String expression
I Floating point expression
I Integer expression
, String
, FLoating point number
I Integer
, Substring
I String array
I Floating point array
I Integer array
I SuperBASIC procedure
I SuperBASIC string function
I SuperBASIC f.p. function
I SuperBASIC integer function
I REPeat loop index
I FOR loop index
I Machine code procedure
, Machine code function

Byte 0 of the name table has an additional usage during parameter passing:
See section 9.8.

The Name pointer is a pointer to an entry in the name list (see the following
section). A name pointer of -1 indicates a nameless item such as the value of
an expression; any other negative pointer indicates a pointer to another
entry in the name table of which this entry is a copy.

The Value pointer is a pointer to an entry in the variable values area (see
section 9.41. A value pointer of -1 indicates that the value is undefined.

Since all these areas may move during execution, the pointers are offsets from
the base of each area. For the RI stack, the base is at the high address;
for the others it i!;"at the bottom.

Note that functions written in SuperBASIC are typed according to whether the
name ends in %,$ or neither. Functions written in machine code, in common
with procedures written in SuperBASIC or machine code, have no type.

The entries for expressions and substrings are for usa within the expression
evaluator: the applications programmaI' would not normally use them.

Page 39

9.3 Name Li st

The names in the name list are stored as a byte character count followed by
the characters of the name. Note that this format is different from all other
uses of strings in ados in which a word character count is used.

9.4 Variable Values Area

This area is a haap in which the values are stored. The format for each type
of data item is given in the following sections.

9.5 Storage Formats

9.5.1 Integer Storage -

An integer is a 16-bit two's complement word.

9.5.2 Floating Point Storage -

A floating point number is stored as a two byte exponent followed by a four
byte mantissa.

The mast significant four bits of the exponent are zero, whilst the remaining
twelve bits are an offset from -$800. The mantissa is two's complement and
fractional, with bit 31 of the mantissa representing -1, and bit 30 of the
mantissa representing +1/2. There are no implicit bits in the mantissa, so
either bit 31 or bit 30 will be set for a normalized number, except in the
special case of zero.

The value of the number is thus mantissa * 2 to the power [exponent-$8oo). If
the mantissa is viewed as two's complement absolute [as opposed to
fractional), the value of the number is given by: mantissa * 2 to the power
(exponent-$81F). The $1F corresponds to 31 decimal: the length of the
mantissa minus one.

Examples of floating point storage are as follows:

Hex

0804 50000000
0801 40000000
o7FF 40000000
o7FF 80000000
0800 80000000
0000 00000000

Decimal

10.00
1.00
0.25

-lh5o
-1 .00
0.00

9.5.3 String Storage -

A stri ng is star_ad as a word charac'Ger count, fa llowed by the
the string. The string storage always takes a multiple
Examples are as follows:

Hex

0004 41424344
0003 414243xx
0000

Std ng

"ABCD"
trABC 11

1111

9.5.4 Array Storage -

Page 40

ch a ract e r s 0 f
of two bytes.

An array descriptar has a header which consists of a longword offset of the
array values from the base of the variable value area, followed by the number
of dimensions [word), followed by a pair of words for each dimension. The
first word is the maximum index, the second word is the index multiplier for
this dimension.

The storage of floating point and integer arrays is entirely regular. A
floating point array takes 6 bytes per element, an integer array 2 bytes per
element.

A string array is stored as an array of characters; except that the zeroth
element of the final dimension is a word containing the string length. The
final dimension defines the. maximum length of the string. This is always
rounded up to the nearest even number.

A substring is the result of internal slicing operations: this is a regular
array of characters; the base of the indexing is one rather than zero.

Examples of Floating Point Storage

Floating point variables (i n hex)
0000 0000 0000 0.0
OB01 4000 0000 1 .0
OBOO 8000 0000 -1 .0
0804 5000 0000 10.0

Floating point arrays

base,2,3,3,2,1 DIM A(3,2)

Examples of String S~orage

(Numbers are in decimaL)"

String variable

4;65,66,67,68 "ABCD"

String array

base,2,3,12,10,1 DIM A$(3,10)

4j65,66,67,68,x,x,x,x,x,x "ABeD"
9; 49 ,50 ,-51 ,52,53,54,55,56,57, x "123456789"
Q;x,x,x,x,x,x,x,x,x,x
1;32,x,X,XfX,X,X~X,X,X

Substri ng array

65,65,67

S.B Code Restrictions

IItI

nn

A$(O,1 TO 31 as above

"ABe"

Page 41

There is a simple set of rules for writing procedures in machine code for
SuperBASIC.

1. As the Super~ASIC program area is liable to move at any time while the

execution is in user mode, all references to this area must be indexed

by AB or A7. AB and A7 must never be saved, used in arithmetic or

address calculations, and must never be altered, except by pushing or

popping the A7 stack. In extreme circumstances it is possible to

enter supervisor mode [Trap #DJ to make the following action atomic.

If this is done, AB and User stack pointer must not be saved or

manipulated before entering supervisor mode, and they must be restored

before exiting.

2. Not more than 128 bytes must be used on the user stack.

3, 00 must be returned as an error code (longJ.

4. 01 to 07 and AD to A5 inclusive may be treated as volatile.

S.7 Linking In New Procedures And Functions

New SUperBASIC procedures and functions written in machine code may be linked
into the name table using the vectored routine BP.INIT (see section 1B.OJ.
When the procedures ~nd functions are in a ROM in the Suitable format (see
section 11.4J, BP.INIT' is called automatically. If the procedures and
functions are to be stored in RAM, they should be loeded into the resident
procedure area as, once added, they may not be removed except by ra-booting
tha machine. It is usually convenient to load the code for calling BP.INIT to
make tha linkaga into tha same area, although this is not necassary.

Page 42

9.B Parameter Passing

The SuperBASIC interpreter passes parameters using a substitution mechanism,
which operates as follows. The interpreter first evaluates any of the
parameters that are expressions. A new entry is then created at the top of
the name table for each actual pararneter~ In the case of a procedure or
function writ-ten in SuperBASIC, this is followed by a null entry for any
formal par-am_ster that is missing from the actual parameter list. The
interpreter then swaps the new name table entries with the old name table
entries corresponding to the actual parameters. In the case af a procedure or
function written in machine ccde f the code is then calLed with AS pointing to
the name table entry for the first parameter in the list, and AS pointing to
the last [[A5-A3]/8 is the number of parameters].

If a local statement is encountered, the entry in the name table is copied to
a new position at the top of the table, and an empty entry put in its place.

At the end of a SuperBASIC procedure or function, the
copied back and local variables are removed. The
name table together with any temporary storage in the
then removed for all procedures and functions.

parameter entries
parameter entries in
variable value table

are
the
are

Byte 0 of the name table entry for a parameter has an additional meaning to
that associated with a normal name table entry. The bottom four bits have the
usual indication of type [O=null, 1=string etc.], but the top four bits are
used to indicate the separator that was present after the parameter in the
actual parameter list, together with information as to whether the actual
parameter was preceded by a hash [#].

Thus the format of byte 0 is as follows:

h sss tttt
1 1 I ________ type: O=null, 1=string, 2=floating pOint, 3=integer
1 1
1 1
1 I ____________ type of following separator: O=none, 1=comma, 2=semi-colon,
1 3=backslash, 4=exclamation mark, 5=TO
1
1 _________ 1 if the parameter was preceded by hash, otherwise 0

9.9 Getting The Values Of Actual Parameters

For the purpose of using scalar [as opposed to array] parameters locally in
the same way as 'call by value' parameters in other high-level languages, it
is expedient to use"Qne of a set of four vectored routines which place the
values of actual parameters on the arithmetic stack. Each routine assumes
that all the parameters will be of the same type. It is passed the values of
A3 and A5 which point to the name table entries for the parameters; it
returns the number of parameters fetched in the least significant word of 03,
and the values themselves in order on the arithmetic stack with the first
parameter at the top (lowest address] of the stack. These routines smash the
separator flags. They are as follows: CA.GTINT gets 16-bit integers, CA.GTFP
gets floating point numbers, CA.GTSTR gets strings, and CA.GTLIN gets floating
point numbers but converts them to 32-bit long integers.

Page 43

These -routines may still be used when processing parameters of mixed type or
when wishing to inspect the separators. To begin with, the values of A3 and
A5 should be saved; then, for each parameter in succession, the separator
flags are inspected, and the appropriate routine is called with A3 pOinting to
the parameter and A5 equal to A3+8, thus getting one parameter.

These routines smash D1, 02, 04, 06, AD and A2. The error codes are returned
in DO and the condition codes.

A special technique is provided for use in those routinEs in whiCh it is
necessary for the user to be abLe to type in a string without quotes, as is
required for SuperBASIC commands involving device names. Firstly, the name is
inspected to see if it is a valid set string variable~ If it is, the string
is fetched using CA.GTSTR; if it is not, the parameter's name itself is
fetched from the name list, and converted to string form by changing its word
count from byte to word, realigning the string if necessary. If a string is
to be input without quotes, it must of course follow the rules for SuperBASIC
names, as described in the Concepts manual.

9.10 The Arithmetic Stack Returned Values

The top of the a rithmeti c stack is usua lly po i nted to by A1. Space may be
allocated on the stack by calling the vectored routine BV.CHRIX: the number
of bytes required is given in OO.L; DO to 03 are smashed by the call. Since
both the stack within the SuperBASIC area and the SuperBASIC area itself may
move during a call, the stack pointer should be saved in BV_RIP(A6] before the
call, and restored from BV_RIP(A6] after the call has been completed. The
routine ensures that the restored value will be correct.

The vectored routines for getting parameters reserve their own space on the
arithmetic stack.

The arithmetic stack is automatically tidied up both after procedures, and
after errors in functions. To make a good return from a function, the
returned value should be at the top (lowest address] of the stack with nothing
below it (that is with both [A6,A1.L] and BV_RIP[A6] pointing to it] when the
routine is exited. The type of the returned value should be in 04 (1=string,
2=floating point number, 3=integer]. Since SuperBASIC has no long integer
type, long integers must be converted to floating point before returning.

Values can also be returned to parameters or, indeed, global variables, by
putting the value on the arithmetic stack in the same way, pointing A3 to the
appropriate name table entry and calling the vectored routine BP.LET. DD is
an error return, and 01, 02, 03, AD, A1 and A2 are smashed. If the actual
parameter was an expression, no error will be given, but the value returned
will be lost. TRe type of the returned parameter is determined by the name
table entry, and the-information on the arithmetic stack must be in the
correct form.

Note that strings must
character count is
multiple of two bytes
end whiCh contains no

be aligned on the arithmetic stack so that the
on a word boundary. All entries on the stack must be a
long, so that a string of odd length has one byte at the
information.

Page 44

9.11 The ChanneL Table

A channel number (#n) is an index to an entry in the SuperBASIC channeL table.
This is a table of items which ars each of length CH~LB~CH (curi'entlyS28J
bytes. The base of the table is at 8V_CHBAS[AS], and the top is at
BV_CHP[AS); thus the base of the entry for channel #n is given by:

[[n*CH.LENCH+BV_CHBAS[AS)) [A61

The format of each table entry is as follows:

SOD long the channel ID
$04 float current graphics cursor [x 1
$OA float current graphics cursor [yl
$10 float turtle angle [degrees)
$16 byte pen status
$20 word character position o'n Line for PRINT and INPUT
$22 word WIDTH of page

If a channel entry is off the top of the channel table, or if the channel ID
is negative, there is no channel open to that # number.

Page 45

10.0 HARDWARE-RELATED PROGRAMMING

10.1 Memory Map

The 68008 has one megabyte of address space. Although an unexpanded QL uses
only the bottom 256 kbytes of this, the allocation for the remainder is
determined and should be adhered to when designing add-on hardware. This is
how it is made up:

SFFFFF ___ -----------
Add-on ROM

SEOOOu __ _ [Up to 1 28 kby tes) i
--- -------------1

Add-on peripherals 1
[8 slots of up to 1

$COOOO 1 16 kbytes each) 1
---1---------------------1

1 Add-on RAM 1

$40000 ___ ;_[_U~~_O _5~=-_kb:~=:2 ____ :

IOn-board user RAM 1
$28000 ___ 1 [S6 kbytes) 1

1-----------------1
1 Se resn RAM 1

$20000 1 [32 kbytes) 1
---1----------------1

IOn-board I/O 1
$10000 ___ 1 [Partially decoded) 1

1 ------------1
1 Plug-in ROM cartridge. 1

$OCOOO 1 [16 kbytes) 1
---1----------------1

IOn-board ROM 1
$00000 ___ 1 [48 kbytes) 1

The registers in the on-board I/O area are partially decoded: the details of
this decode may vary according to different versions of the Ql hardware - some
versions will recognise any address in the enti re area. However, the address
map normally used is the same for all Qls:

--
1 Address 1 Function Function 1
I [Hex) J [Read) 1 [Write) 1
1-----1------------------------1 -------1
1 $18023 1 Microdrive data [track 2) 1 Display control 1
1 $18022 I Mi crodrive data [track 1) I Microdrive/RS-232-C data 1
1 $18021 1 Interrupt/IPC link status 1 Interrupt control 1
I $18020 I Microdrive/RS-232-C status I Microdrive control I
I $18003 I Real-time clock byte 3 I IPC link control I
I $18002 I Rea l-ti me clock byte 2 I Transmit control I
I $18001 I Rea l-ti me clock byte 1 I Real-time clock step I
I $18000 I Rea l-ti me clock byte 0 I Real-time clock reset I

-------------- -------------
The display control registers are in the ZX8301 "Master chip", and the others
are in tha ZX8302 "Peripheral chip". The detai ls of the Ql hardware are
rather obscure, and it is strongly recommended thet these registers should not
be used by applications programs, end should only be eccessed via Odos traps

Page 4S

or vectorad routines~

10.2 Display Control

The display format in memory is explained below: this format is specific to
the QL and may change on future Sinclair products. It is, therefore, strongly
advised that screen output be performed using only the standard screen driver,
together with the MT.DMODE trap.

In 512-pixel mode, two bits per pixsl are used, and the GREEN and BLUE signals
are tied together, giving a choice of four colours: black, white, green and
red. On a monochrome screen, this will translate as a four level greyscale.

In 256-pixel mode, four bits per pixel are used: one bit each for Red, Green
and Blue, and one bit for flashing. The flash bit operates as a toggle: when
set for the first time, it freezes the background colour at the value set by
R, G and B, and starts flashing at the next bit in the line, when set for the
second time, it stops flashing. Flashing is always cleared at the beginning
of a raster line.

Addressing for display memory
progresses in the order of the
to bottom of the picture. Each
follows:

starts
raster
word

at the bottom of
scan - from left to
in display memory

High byte (Ao=o) low Byte (Ao=1) Mode

07 06 05 04 03 02 01 DD 07 06 05 04 03 02 01 DD

dynamic RAM
right and from
is fa rma tted

G7 G6 G5 G4 G3 G2 G1 GO
G3 F3 G2 F2 G1 F1 GO FO

R7 R6 R5 R4 R3 R2 R1 Ro
R3 B3 R2 B2 R1 B1 Ro SO

512-pi xel
256-pi xe l

and
top
as

R, G, Band F in the above refer to Red, Green, Blue and Flash. The numbering
is such that a binary word appears written as it will appear on the display:
ie RO is the value of Red for the rightmost pixel, that is the last pixel to
be shifted out onto the raster.

10.3 Display Control Register

This is a write-only register, which is at $18063 in the Ql.

One of its bits is available through the Qdos MT.DMODE trap: bit 3, which is
o for 512 pi Xe l mod~ and 1 for 256 pi xe l mode.

The other two bits of the display control register are not supported by Qdos,
these being bit 1 of the display control register, which can be used to blank
the display completely, and bit 7, which can be used to switch the base of
screen memory from $20000 to $28000. Future versions of Qdos may allow the
system variables to be initialised at $30000 to take advantage of this
dual-screen feature: the present version does not.

8its 0, 2, 4, 5 and 6 of the display control register should never be set to
anything other than zero, as they are reserved and may have unpredictable
rasults in future versions of the Ql hardware.

Page 47

10.4 Keyboard And Sound Control

The keyboard and loudspeaker are controlled by the QLts second processor,
which is an 8049 single-chip microcomputer: this is known in the aL as the
Intelliaent PerioheraL Controller or IPC. The MT.IPCOM trap provides a set of
commands that the CPU can send to the IPC over the serial link that connects
thema This trap is discussed in greater detail in section 13.0.

When the keybQard is accessed via the console driver, the usual functions of
debounce and conversion to ASCII are performed, in addition to the functions
described in section 15.0. The other way of accessing the keyboard is to use
the Mi.IPCOM trap to monitor the instantaneous state of the keys directly:
this is the only way of detecting multiple key presses [necessary for joystick
inputJ, Or of detecting the state of the SHIFT, CTRL and AlT keys when no
other key has been depressed. See the SuperBASIC Keywords entry an the KEYROW
function far an example of the use of this technique.

The same trap, with different parameters, is used for sound generation.

10.5 Serial I/O

The Ql's serial I/O should only be accessed via the serial driver, except far
setting the baud rate, which is performed by the ~I.BAUD trap. The only other
function that.can safely be performed by the user independently of the
operating system is the checking of the transmit handshake lines (OTR an
channel 1 and CTS an channel 2J, which can be looked at by monitoring bits 4
and 5 of the microdrive status register respectively. Note that if the
connector is rewired to use these pins as data lines, this function could be
used to perform RS-232-C reception entirely in software, which would make it
passible to perform XON-XOFF handshaking or split baudrate operation.

10.6 Real-time Clack

The Ql's real-time clack is a 32-bit seconds counter.
MT.RClCK, MT.SClCK and MT.AClCK are used to read, set and
The vectored routines CN.DATE and CN.DAY are used to convert
to a string.

10.7 Network

The three traps
adjust the clock.
the time obtained

This should not be accessed other than by the built-in device driver.

10.8 Microdrives

Normally, these should not be accessed other than by the
driver. However, it is passible to write routines to
sectors directly in order to perform such functions as fast
copying or recovery of data from a damaged medium.

built-in device
accesS microdrive
medium-ta-medium

Page 48

There are four vectored routines provided for this purpose: MD.READ,
MD.WRITE, MD.VERIN and MD.SECTR. Use of these routines requires a detailed
understanding of the microdrive hardware and format, and is probably beyond
the scope of most uSers. However the following routines are also required to
perform the action of selecting and deseLecting a microdrive. In current
versions of the operating system (up to KS] they are not vectored, through
they should be in future reLeases. The routines are called STARTUP and
WIND_DWN respectively

Routine to start up a microdrive. N8:RETURNS IN SUPERVISOR MODE [if
d3:::::1 to 8); d1 d1 smashed; d2 d2 smashed; d3 number of microdrive 03
preserved; aO aD SV_BASE, s3 83 pc_tctrl {=$18020); errors:
OR:microdrive out of range; startup

cmp. l #1,d3 ; l ega l mi crodri ye?

b l t.s ill _drve ;jump if not

cmp #8,d3 ; lege l mi crodri ve?

bgt.s i ll_drve· ;j ump if not

move.l [sp J +, a3 ;a3=return address

moveq #mt.inf,do ;select MT.INF

trap #1 ;ao=To system variables

trap #0 ;supervisor mode

move.l a3 ,-[sp J j1return' (geddi t?J the return address

moveq #1oh, dO ;microdrive mode

bsr sys_wser iwai t for RS232 to complete

or #07ooh,sr ;shut out rest of world

move.l d3,d1 ;d1 is microdrive to be started

move.l #pc_tctrl,a3 ;a3=Control register

bsr md_selec ;start it up

moveq #O,dO

rts

moveq #-4, dO

rts ;
IN SUPERVISOR
a3 Instuction

;no problems

;return ill_drve

;error=out of range

Routine to wind down (allllJ microdrives
MODE; ; d1 d1 smashed; d2 d2 smashed
after call to here (IIJ ; wind_dwn

moveq #mt.inf,do ;select MT.INF

N8:MUST BE CALLED
aD aD SV_BASE a3

trap #1

move ~ l

;aQ=To system variables

#pc_tctrl ,a3 ;s3=Cantrol register

bsr.s md_desel ;wind it down

bsr sys_rser ;re-anable RS232

move.l

move #O,sr

mov8.l

rts

[sp]+,a3 ;a3=return address

; interrupts off

a3,-[spJ ;'return' return addr.

;return

Associated subroutines for startup and wind_dwn

move.b dO,-[spJ ;save operation wait

subq.w #1,sv_timo[aO) ;decrement timeout

blt.s set_mode ;done?

move.w #[20000*15-82)/36,dO ;time=18*n+42 cycles delay1

dbra dO,delay1 ;delay

bra.s wait ;repeat unti l timeout expires set_mode

clr.w sv_timo[aO) ;clear wait

and.b #pc.notmd,sv_tmode[aO) ;not RS232

move.b [sp)+,dO

or.b dO,sv_tmode[aO) ;either mdv or net

and.b #OFFh-pc.maskt,sv-pcint[aO);disable transmit interrupt exit

move.b sv_tmode[aO) ,pc_tctrl ;set pc

rts sys_rser

bclr #pc .. serb,sv_tmode[aO) ;set RS232 mode

or.b #pc.maskt,sv-pcint[aO) ;enable transmit interrupt

bra.s exit md_desel

moveq #pc.desel,d2 ;clock in deselect bit first

moveq 17 ,d1 ;deselect all

Page 49

bra.s sedes md_se lee

moveq #pc.selec,02 ;clock in select bit first

subq. w

mave.b

#1 ,d1 ; and clock it th rough n ti mes sedes elk_loop

02,(a3) icLock high

moveq #(18*15-40')/4,dO ;time=2*n+20 cycles

rOT. l dO, dO

bcLr #pc •• sclk,d2 ;clock low

move.b d2,(63) ; ..• clocks d2.o into first drive

. moveq #[18*15-4O]/4,dO ;time=2*n+2o cycles

ror.l do,do

moveq #pc.desel,d2 ;clock high - deselect bit next

dbra d1,clk_Loop

rts drive

bsr.s startup

bsr.s wind_dwn

rts

Page 50

Page 51

11.0 ADDING PERIPHERAL CARDS TO THE QL

Peripheral cards may be plugged into the expansion connector on the left-hand
side of ~:...- O-L r or into one of the connectors in the QL expansion l .. dlt:: module: a
un; t whi ch allows several add-on
The GL expansion moduLe consf sts
a spec; ally wi red backp Lane. The
ribbon cable and buffer cars.

cards to be connected to
of a power supp ly and a
backplane is connected

the
card

to

UL in
cage
the

paralleL.
containing
QL vi a a

There are two general cet-agorie5 of peripheral card for the G.L:
memory cards, and other peripheral cards.

pure add-on

It is intended that onLy one pure add-on RAM card be plugged into the machine
at anyone time. It is allocated the address area between $40000 and SBFFFF;
the add-on memory should be contiguous from $40000 upwards. This allows for
an add-on memory size of up to 512 kbytes.

There is also room for an add-on ROM card of up to 12B kbytes, which is
allocated the addresses $EOOOO to $FFFFF.

Other peripheral cards contain electronics for the devices being added, a
small ROM containing the drivers for the devices being added together with a
code allowing the QL to detect that the card is present, and a 4-bit
comparator which is used to select the card as explained below.

Note that the convention adopted in this document for an active low signal is
to append the letter I'Ll' to the end of the signal name, as in DTACKL, VPAL
etc. This takes the place of the overbar indication used in the data sheets
from most vendors.

11.1 Expansion Connector

The expansion ~onnector allows extra peripherals to be plugged into the Ql.
Details of the connections available at the connector may be found in the QL
Concepts manual.

The connector inside both the QL and the expansion module is a 64-way
DIN-41612 indirect edge connector, as found on standard Eurocard modules.
connector on each add-on card should be the inverse version of this.

male
The

The VIN supply is in the region of +9V DC: the trough never falling below 7V.
Up to 500 mA may be drawn from this to power the card.

No add-on card
LSTTL loads.
equiva lent, in

should load any pin on the edge connector by
All add-on card data bus output drivers should

terms of drive ability, and in being tri-state.

mo re than two
be a 74LS245 or

Care should be taken-with the physical length of runs off the expansion bus.

When the expansion module is connected, RESETCPUL is held low until power is
applied to the expansion module. Switching off the expansion module also
forces RESETCPUL low.

Page 52

11.2 CPU Interface

The CPU interface is totally memory-mapped onto the 62008' s bus, contral of
the bus for use with the video display controller being obtained by using the
DTACKL signal to arbitrate the bus. Memory access is entirely controlled by
DSL, with ASL left unused. ASL snoul-d not be used to gate any add-on
hardware.

An unexpanded QL does not look at address Lines A19 and A18. In peripheral
cards which are to be added to the Q.L~ it is necessary for each card to
disable the circuitry on the QL itself when that peripheral card recognises
its own address. This is achieved by pulling signal DSMCL high before DSL
goes low including buffering times. This is aone typically by using a fast
NPN switching transistor [such as an MPS2369] connected as an emitter follower
with the emitter connected to OSMCl, the collector to +5V and the base to a
logic Signal. Note that the timing for this operation is the most critical in
most hardware interfaces to the Ql, especially when the necessary signals have
been buffered.

Add-on cards must supply OTACKl or VPAl as required, to notify the CPU that
they have recognised their address.

All 6800B signals are available both on the expansion
expansion module to allow expansion to include
peripherals.

connector and in the
co processors or other

The following signals are outputs only: AO-A19, ROWl, ASl, OSl, BGl, ClKCPU,
E, RED, BLUE, GREEN, CSYNCl, VSYNCH, ROMOEH, FCO-2, RESETCPUl.

The following lines are inputs only, and should only be driven from open
collector outputs: OTACKl, BRl, VPAl, IPlOl, IPl1l, BERRl, EXTINTl, OBGl.

The data bus, 00-07, is bidirectional.

When using the Ql expansion module, the data bus buffers in the module are
enabled whenever A1B or A19 is high, or if the Data Bus Grab Signal [OBGl] is
asserted by any add-on card on pin 25A of the edge connector. If OBGl is to
be used, it should be driven by an open collector buffer. The OBGl signal
should be asserted when an external device wishes to respond to an address in
the lowest 256K this is usually occupied by existing [unexpanded] Ql
hardware. Normally this is only used to "take over" the system ROM and
replace it with another operating system. Its effect is to enable the data
bus buffer in the Ql buffer card: on the bare Ql it is not connected, and the
peripheral is assumed to be able to "pull" harder than the Ql, as it will when
it is equipped with the required data bus buffer [74lS245 Or equivalent].

The EXTINTl pin may be used to generate a level 2 external interrupt, which
can be linked to a user task [see section 6.3). Note that the EXTINTl pin
must not be negated'unti l the Qdos start-up mechanism is complete, or- there is
a risk of the system hanging up.

Page 53

11.3 Peripheral Card Addressing

Peripheral cards (other than pure add-on memory cards] are allocated the
address space between $COOOOH and SDFFFFH. Each peripheraL card, when
selected, must disable DSMCL and assert VPAL or DTACKL as required, for its
own USe. This address space is split into eight slots of 16 kbytas each;
each peripheral card should normally take only one block if a full set of
eight peripheral cards is to be allowed to operate concurrentty.

There is a set of four select lines, SPo-SP3, appearing an the edge connector.
lns first card in the QL expansion module, or a single card directly plugged
into the QL, receives a value of zero on these four lines. Each slot in the
expansion module has a value one different from that in the other slots: this
means that each card is allocated 16 kbytes of address space. The card select
logic compares the values on A17-A14 against the number coming in on the
select lines in order to determine whether that card is selected. For the
card to be selected it must be the case that A14=SPO, A15=SP1, A16=SP2 and
A17=SP3.

If there is a ROM containing device drivers for the peripheral card, it should
sit in the bottom addresses of the 16 kbyte block. The format of the lowest
part of this ROM is specified in the next section.

11.4 Add-on Card ROMs

When the machine is booted, the operating system checks for plug-in ROM
drivers by looking for the characteristic longword flag $4AFBo001 at the base
of each location in which a ROM might be present. The beginning of a plug-in
ROM should be in the following format:

00 $4AFB0001 [flag to i ndi cate ROM is present)
04 pointer to list of BASIC procedures and functions
06 pointer to initialisation routine
08 string identifying the ROM

The pointers are relative to the base of the ROM. If the list pointer is zero
then there will be no attempt to limk routines into SuperBasic.

The list of BASIC procedures and functions is in the form used by BP.INIT [see
section 16.0).

At start-up the machine will link in the additional BASIC procedures from the
ROM, then call the initialisation routine [in user mode) whiCh must not modify
A6, and finally must restore AD [the initial window ID), and A3, the pointer
to the ROM, on exit •. Up to 128 bytes may be used on the user stack.

The description should
the ASCII characters
character [ASCII 10).
be limited to 36.

be in the form of e character count [word) followed by
of the device description[s) ending with the newline

It is recommended that the number of characters should

All code for device drivers must be position independent, since the eddresses
of the ROM and the devices on the card will be dependent upon the position at
which it has been plugged into the QL expansion module. This allows multiple
copies of the same add-on card to be used simulteneously.

Page 54

12.0 NON-ENGLISH QLS

There are three areas in which non-English als may differ from English als:
th e video, th e keyboa rd, and th 8 eha racter set fa r se r ; a l commun i ca t ions.

The version codes for non-English QLs are adjusted appropriately to contain a
character identifying the cDuntry. In the version code returned by MT.INF~
this character replaces the Decimal point; in the string returned by the
SuperBASIC VER$ function, the character is added on at the end, producing a
string three characters long for non-English Qls.

12.1 Vi deo

This is different for countries where the television system is NTSC, which
permits the use of fewer raster lines than PAL. In Qls for such countries,
the following options are the defaults:

For monitor operation, a 50Hz 624-line non-interlaced system is used;
the same system as is used on the English Ql. The full 512x256 pixel
is available, and the default windows and character size are the same
the monitor mode on an English Ql.

th is is
di sp lay
as for

For TV operation, a 60Hz 524-line non-interlaced system is used in which the
number of raster lines available is limited to 192. In order to ease the task
of software conversion, an alternate display font is provided which allows a
6x8 character square instead of the usual 6x10: This ensures approximately
the same number of visible rows of text on both PAL and NTSC Qls, at the cost
of true descenders and reduced vertical spacing. The default windows and
graphics scaling for TV operation are different from those of the English Ql.

It is to be expected that a different version of any applications software (or
at least different options) will be required for NTSC operation on domestic
televisions.

12.2 Non-English-language Keyboards

The keyboard layout for most European countries will be different from the
English layout. This difference should be largely transparent to applications
software, since the 'Ql ASCII' codes contain all the characters necessary for
the European countries in question, and the codes generated are independent of
the keyboard layout and hence of the actual key depressions required to
generate them.

However, there are a few subtleties, the following being the most obvious:

1. A program which- draws pictures of keys in certain places wi II
certainly produce an incorrect drawing if the location of those keys
has changed between countries.

2. The keyrow function (or MT.IPCOM trap) refers to the physical
position of the keys, not to their logical meaning. For example, a
test on an English Ql for the letter 'Q' using key row will turn into
a test for the letter 'A' on a French Ql which has an AZERTY
keyboard.

Page 55

3. An instruction to 'hit any keyl will no-t be strictly accurate for a
country which a~plcys non-spacing diacriticals, where the keypress of
an accent character d08s not generate a code until the character to
be accented is pressed. The length of the type-ahead buffer in the
IPC will be apparently reduced in such cases.

12.3 Character Set

The English character set is available in all countries. However, in
non-EngLish countries, the character set for serial communications may
(optionally] be translated inta a 'local' character set, this being chosen by
the Sinclair distributor for that country as being a commonly used interface
standard. A further option allows the user to specify his own translation
table, since it is anticipated that a number of countries will have several
standards [i.e., no standards at all].

12.4 Special Alphabets

Languages with non-Roman alphabets, such as Hebrew, Greek, Thai, Arabic, etc.,
require special treatment. No general scheme has been devised for making
software transportable to these countries, and the implementation means will
be specific to each country.

Page 56

13.0 MANAGER TRAPS

The special trap #0 is used to enter supervisor mode. The uSer should store
the status register somewhere before calling this trap, so that he can return
to user mode by restoring it to its previous value.

MT.ACLCK

MT • ACTIV

*~**************************~***************~*****************

" "
" TRAP iI1 DO==$15 MT.ACLCK ..
" "
" Adj ust the clock ..
" ..
" Ca II parameters Return parameters "
" ..
" 01 • L adj ustment in seconds 01.L time in seconds "
" 02 02 ??? "
" 03 03 ??? " " AD AD ??? "
" A1 A1 preserved "
" A2 A2 preserved "
" A3 A3 P rese rved "
" " ***

As setting the clock takes a significant time, no adjustment is
made if a call is made to adjust the clock and 01=0.

Time starts at 00:00 1 January 1961.

" "
"
"
"
"
"
"
"
" "
"
"
"
"
"
"
"
"
"

TRAP #1 OO=$A MT . ACTIV

Activate a job

Ca II parameters

01. L j ob ID
02.B priority (0 to 127)
03.W timeout (0 or -1)
AD
A1
A2
A3

Error returns:

NJ job does not exi st
NC'job elready active

Return parameters

01.LjobIO
02 preserved
03 p rese rved

" "
"
"
"
"
"

" AD base of job ctrl area"
A1 p rese rved " A2 preserved
A3 preserved if 03=D "

"
"
" " ,.
"
" . ***

This activates a job in the transient area. Execution commences
at the start address defined when the job was created.

Page 57

If the timeout is zero then the execut on of the current job
continues, otherwise the current job w II be suspended until the
job activated has completed. The trap w II then return with the
error code from that job.

MT.ALBAS

MT .ALCHP

Page 58

'" "
'" TRAP #1 00=$16 HT .ALBAS "
'" "
'" Allocate Basic program araa "
" "
'" Call parameters Return ps ramete i'S "
"

,.
" D1 . L number of bytes requi red 01.L nr. bytes allocated " ,. 02 02 ??? "
" D3 03 ??? "
" AD AD ??? "
" Ai A1 ??? "
" A2 A2 ??? " ,. A3 A3 ??? "
" AS base address AS new base address "
" A7 user stack pointer A7 new stack pointer "
" "
" Error retu rns: "
'" "
" OM out of memory "
" " **

" "
" TRAP #1 00=$18 MT.ALCHP "
" "
" A lloca te common heap area ,.

" "
" Ca II parameters Return parameters "
" "
" 01.L nr. bytes required 01 .L nr. bytes allocated "
" 02.L owner job ID 02 ??? " " 03 03 ??? "
" AD AD base address of area "
" A1 A1 ??? "
" A2 A2 ??? "
" A3 A3 ??? "
" "
" Error returns: "
" "
" OM out of memory "
" NJ job does not exist "
" "
*******~***

This trap i~ a specific example of the general heap allocation
mechani srn
described in section 2.1.4 and accessible using MT.ALLOC.

MT.ALLOC

MT .ALRES

Page 59

.. ..

..
" ..
..
"
"

Trap #1 DO=$C MT.ALLOC

Allocates an area in a heap

Ca Ll parameters

01 . L length requ i red
02
03

Return parameters

D1.L length allocated
02
03

???
?'??

..
"
" ..

AD
A1
A2

ptr to ptr to free space AD
A1
A2
A3

base of area allocated"

A3
AS base address AS

Error returns:

OM no free space large enough

???
???
???
preserved

"

Two trap entries are provided for user heap management where this
is required to be atomic. AS is used as a base address for both
this call and for MT.LNKFR so that AD (and A1) is an address
relative to AS.

See section 2.1.4 for details of the heap mechanism.

*** .. " .. TRAP #1 DD=$E MT .ALRES Allocate resident procedure area Call parameters Return parameters 01 . L number of bytes reqd. 01 ??? 02 02 ??? 03 03 ??? AD AD base address of area A1 A1 ??? A2 A2 ??? A3 A3 ??? Error retu rns: OM out of memory NC unable to a L locate (TRNSP area not empty)

This trap, in common with its partner MT.RERES (release residant
procedure area) should only be invoked when the transient program
area is empty.

HT. BAUD

MT .CJDB

Page SO

'" "
'" TRAP #1 00=$12 MT .BAUD "
" " " Sats the baud rate "
" ..
" Ca l L parameters Return parameters ,.
.. "
" D1.W baud ra'te 01 ??? '"
" D2 02 preserved D3 03 preserved "
" AD Aa preserved '"
" A1 A1 preserved "
" A2 A2 preserved " .. A3 A3 preserved *
" * ***

" TRAP 111 00=$1 MT .CJDB "
* *
* Creates a job in transient program area ..
* * .. Call parameters Return parameters * 01.L owner job ID 01. L job ID ..
* D2.L length of code [bytes) 02 preserved *
* D3.L length of data space 03 preserved "
" AO AO base of a rea allocated"

" A1 start address or 0 A1 preserved " * A2 A2 preserved *
* A3 A3 preserved *
* ..
* Error returns: *
* OM out of memory NJ no room in job table or 01 is not a job " ***

This trap allocates space in the transient program area, and sets
up a job entry in the scheduler tables. This does not invoke the
job and the only initialisation is that two words of 0 are put on
the· stack. The program itself would normally be loaded, by
another Job, into the space allocated, after this system call.
The stack pointer saved in the job control area points initially
to two zero words on the stack [at the highest addresses in the
job's data area); if channels are to be opened for the job, or a
command string is to be passed to the job, then this can be done
before the Job is ectivated.

If 01 is negative, the new job is independent, otherwise it is
owned by the ca II i ng job.

HT .OMOOE

MT .FREE

Page 61

************************************-****************;:;:.**********

"
"

"
"
"
"
" ,.
,.
,.
,.
,.
" ,.
,.
,.
,.
" ,.
,.

TRAP #1 00=$10 MT.DMODE

Sets or reads the display mode

Call parameters Return parameters

01 .8 key -1 read mode D1.8 display mode
0 mode is 4 co lau r
8 mode is 8 co lour

D2.8 key -1 read display 02.8 display type
0 monitor
1 625 line TV
2 525 line TV

" The mode when 'TV' is selected at switch-on is set to
1 or 2 depending on the version of UL shipped

03 03 preserved
AD AD preserved
A1 A1 preserved
A2 A2 preserved
A3 A3 preserved

A4 ???

,.
"

" ,.

"
'" ,.
"
*
,.
,.
"
" ,.
,.
,.
,.
,.
,.

This call is used to set or read the current display mode. It is
treated as a manager trap as it affects all the displayed windows.
If a call is made to set the screen mode, then all the windows on
the screen are cleared and the character sizes may be adjusted.
Obviously, there are serious risks involved in calling this trap
to set the mode when there are jobs in the machine accessing the
screen.

*** ,. ,.
,. TRAP #1 00=$6 MT .FREE ,.
,. ,.
,.

Find la rgest contiguous free space that may be ,.
,. a lloca ted in the transient program area ,.
,. ,.
" Call parameters Return parameters ,.
,. ,.
" 01'-c 01.L length of space found " ,. 02 02 ??? ,.
,. 03 03 ??? ,.
" AD AD ??? ,.
,. A1 A1 ??? ,.
,. A2 A2 ??? ,.
,. A3 A3 ??? " ,. ,.

MT .FRJOB

MT .INF

Page 62

'" "
" TRAP .,tl. .. ,,' 00=$5 MT aFRJOB "
'" " ,. Force remove job from transient pr'ogram area '" ,.

'" ,. Ca II parameters Return parameters " ,.
" ,. D1.L job ID D1 ??? ,.

" 02 02 ??? ,.
" 03.L error code 03 ??? '" ,. AD AD ??? ,.
" A1 A1 ??? ,.
" A2 A2 ??? ,.
" A3 A3 ??? "
" " " Error returns: " ,.

" ,. NJ job does not exist "
" " ***

This inactivates a complete job tree and deletes all jobs in it.
If 01 is a negative word then the job is the current job.

Neither of the traps MT.FRJOB or MT.RJOB to remove jobs Can remove
job O.

Neither of these traps are guaranteed atomic.

If there is a job waiting on completion of any job removed, this
is released with DO set to the error code (see MT.ACTIV DO=$AJ.

" ,.
" TRAP #1 00=$0 MT .INF ,.
" " ,. System information ,.
,.

" " Ca II parameters Return parameters "
" " ,. 01 01.L current job ID "
" 02 D2.L ASCII version (n.nnJ " " 03 03 preserved "
" AD AD pointer to system vars*
" A1 A1 preserved "
" A2 A2 preserved "
" A3 A3 preserved "
" " ***

HT.TPCOM

Page 63

~**** ,. TRAP ;...,
~ . 00=$11 MT.IPCOM ,.

* " .. Sends a command to the IPC
'" Call parameters Return parameters ,.
.. ,.
'" 01 D1 . B return parameter "
:;: 02 02 preserved 03 03 preserved " .. 05 ??? " ,. 07 ??? AD AD preserved A1 A1 preserved A2 A2 preserved *
* A3 pointer to command AS preserved

This trap sends a command to the IPC.

A command sent to the IPC is a nibble followed by a stream of
nibbles or bytes being the parameters of the command; Some
information may then be returned from the IPC. The command format
for MT.IPCOM is a header describing the command to be sent,
followed by the parameters to be sent, followed by a byte
indicating whether a reply is expected. The IPC communication is
completely unprotected and the command must not contain any errOrs
or else the entire machine will hang up. IPC communications is a
very slow process and excessive Use of the IPC, for example:
polling all rows of the keyboard - the cursor keys have been
organised to all be in one row, will cause very high processor
overheads.

The command format allows 0, 4 or 8 bits to be transferred from
each byte in the parameter block. This is encoded in 2 bits:

00 send least significant 4 bits
01 send nothing
10 send all8 bits
11 send nothing.

The complete command format is:

1 byte
1 byte
1 long word

n bytes
1 byte

the IPC command nibble in the LS 4 bits;
the number of parameter bytes to follow;
containing the codes for the amount of each
parameter byte to be sent in reverse order:
bits 1,0 the amount of the first byte to send
bits 3,2 the amount of the second byte
ate. ;
the parameter bytes
length of reply encoded in bits 1,0.

Most of the IPC commands ere for use by the opereting system and
any attempt by application programs to use these is liable to

Page 64

cause toss of data or worse~ There are three commands for the IPC
which may be used by applications programs:

$9 read a row of the keyboard, 1 parameter
4 bits the row number
8 bits repLy

$A initiate sound, 8 parameters
B bits pitch1
B bits
16 bi ts
16 bits
4 bits
4 bi ts
4 bits
4 bits
no reply

pitch2
interval between steps
duration
step in pi tch
wrap
randomness of step
fuzzi ness

$8 kill sound, no parameters, no reply.

MT.JINF

MT .LOO

MT • LIDO

MT.LNKFR

Page S5

'"
'"
*
"
"
'"
"
"
"
"
"
"
"
"
"
"
"

TRAP #1 00=$2 MT.JINF

Information on a job

Call parameters

D1~L job ID
D2.L job at top of tree
03

AD
Ai
A2
A3

Error returns:

NJ job does not exist

Return parameters

D1.L next job in tree
D2.L owner jab
OS.L MS8 -Vs if suspended

LSB priority
AD base address of job
Ai ???
A2 preserved
A3 p rese rved

*
"
"
'"
"
*

"
"
"
*
"
"
"
" " ***

This trap returns the status of a job.

This trap may be used to check the status of a tree of jobs. On
each call 02 should be the ID of the job at the top of the tree;
to scan a complete tree the trap is made with 01 being the return
value of the previous call. When the tree has been completely
scanned 01 is returned equal to zero.

See the entry for MT.LXINT for details.

See the entry for MT.LXINT for details.

" " " Trap 111 00=$0 MT.LNKFR " " *
" Links a free space (back) into a heap " " " " Ca II parameters Return parameters "
" " " 01.L length to link in 01 ??? "
" 02 02 ??? "
" 03' 03 ??? " " AD base of new space AD ??? "
" Ai ptr to ptr to free space Ai ??? "
" A2 A2 ??? " " A3 A3 ??? "
" AS base address AS preserved "
" " ***

AS is used as a bese address for this call and for MT.ALLOC so
that AD [and Ai) is an address relative to AS.

Page 66

MT. LPOLL See the entry for MT.LXINT for details.

MT • LSCHD See the entry for MT.LXINT for details~

MT.LXINT

HT .PRIOR

HT.RCLCK

Page 67

#****************************~********************************

"

*
* ,. ,.
* ,.
,.

*
*
*
*
*
*

TRAP #1 00=$1A
00=S1C
00=$1 E
00=$20
00=$22

HT.LXINT
HT. LPOLL
MT • LSCHD
HT. LIDO
MT. lOO

Call

01
02
03
AD
A1
A2
A3

Links an external interrupt service routine
a polling 50/60 Hz service routine
a scheduler loop task
an ID device driver
or a directory device driver

into the operating system

parameters Return parameters

01 preserved
02 preserved
03 preserved

address of Link AD preserved
A1 ???
A2 preserved
A3 preservad

"
"
"

..
"
" ,.
,.
,.
* ,.
,.
,.
,.
,.
,.
" ***

,. * ,.
,.
* ,.
,.
,.
,.
,.
,.
* ,.
,.
,.
,. ,.
,.
,. ,.

TRAP #1 00=$8 MT .PRIOR

Changes job priority

Ca LL parameters

01 .L j ob ID
02.8 priority
03
AO
A1
A2
A3

Er ror retu rns:

[0 to 1271

~ NJ job does not exist

Return parameters

01 .L job ID
02 preserved
03 preserved
AO base of job
A1 preserved
A2 preserved
A3 preserved

,.
,.
,.
,.
*
* ,.
* ,.

ctrL area ,. ,.
,.
,.
,.
,.
,.
,.
..

This caLL is used to change the priority of a job. If 01 is a
negative word it wilL change the priority of the current job.
Setting the priority to 0 wiLL cause inactivation. This caLL
reenters the scheduLer end so a job setting its own priority to
zero wiLL be immediateLy inactiveted.

"
"
"
" "

,.
,.
" ,.

TRAP #1 00=$13

Reads the clock

Ca II pe rameters

01
02
03
AD
Al
A2
A3

MT.RCLCK

Return paraT.eters

01.L
02
03
AD
A1
A2
A3

ti me in seconds
???
preserved
???
preserved
preserved
preserved

Page 68

"
" ,.

" ,.
,.
"

HT.ROO

MT .REEAS

HT .RECHP

HT.RELJ8

See the entry for HT.RXINT for details

..
"
*

TRAP #1 00=$17 HT .REBAS

Release Basic program area

Call par8J118ters Return parameters

"
"
" ..
"

D1.L nf'.
02
03
AD .. " ,
A2
A3
AS base
A7 user

of bytes to release

address
stack pointer

01. L
02
03
AD
A1
A2
A3
A6
A7

nr .
???
???
???
???
???
???
new
new

bytes released

base address
stack painter

Page 69

.. ..
"
"
" "

"
"
"
"
" ***

****~** TRAP #1 00=$19 HT .RECHP " .. " .. Release common heap area Call parameters Return parameters 01 01 ??? 02 02 ??? ..
" 03 03 ??? AD base of area to be freed AD ??? A1 A1 ??? A2 A2 ??? A3 A3 ???

*** TRAP #1 00=$9 MT.RELJB Releases a job " -.. Ca II parameters Return parameters 01.L job ID 01 .L job ID " .. 02 02 preserved 03 03 preserved AD AD base of job ctrl area *
" A1 A1 preserved A2 A2 preserved A3 A3 preserved

Page 70

Error returns:

NJ not a valid job ID

After this call all jobs are rescheduled.

The activity of jobs ca be cant ro lled by activation or by
modi fi cati on of the prior ty levels. A job at priority leve l 0 is
inactiv8 r at any other pr ority level it is active.

MT .RERES

MT.RIOO

MT .RJOB

MT.RPOLL

MT • RSCHO

Page 71

.. " '" TRAP #1 OO=$P MT .RERES '"
" "
" Release res i-dent procedure a rea '" '" " .. Call parameters Return parameters ..
'" '"
" 01 01 ??? '"
" 02 02 ?'?? ..
" 03 03 ??? '"
'" AO AD ??? '" " A1 A1 ??? " .. A2 A2 ??? " .. A3 A3 ??? "
" Error retu rns: "
" NC unabLe to release [TRNSP area not emptyl " .. '" ***

This trap, in common with its partner, MT.ALRES (allocate resident
procedure areal, should only be invoked when the transient program
area j s empty.

See the entry for MT.RXINT for details.

" "
'" TRAP #1 00=$4 MT. RJOB "

" "
"
"
"
"
"
"
'"
"
"
"
"
"
"
'"
'"
'"
"

Remove job from transient program area

Ca LL pa rameters

01.L job ID
02
03.L error code
AD
A1
A2
A3

Error returns:

- NJ job does not exist
NC.job not inactive

Return parameters

01 ???
02 ???
03 ???
AD '???
A1 ???
A2 ???
A3 ???

"
"
"
" ,.
,.
"
"
"
"
"
"
"
"
"
" " ***

This trap removes a job (and its subsidiariesl from the transient
program area. On Ly inactive jobs may be removed.

See the entry for MT.RXINT for details.

See the entry for MT.RXINT for details.

MT.RXINT

MT .SCLCK

Page 72

~**************

"
"
"
*
"
*
*
"
"
" *
*
*
*
*
"
*
"
*
"
"
"

TRAP #1 CO=$1 8
DO=$10
00=S1F
00=$21
00::::$23

MT.RXINT
MT .RPOLL
MT .RSCHD
MT.RIoO
MT.Roo

Removes an external interrupt service routine
a polling 50/S0 Hz service routine
a scheduter loop task
an ID device driver
or a directory device driver

from the operating system

Ca L L parameters Return parameters

01
02
03
AO
A1
A2
A3

address of Link

01
02
03
AD
A1
A2
A3

preserved
preserved
preserved
p rese rved
???
preserved
preserved

"
"
"
" "

"
"

"

" *
*
*
*
*
"
"
"
"
" ***

" "
" TRAP #1 00=$14 MT.SCLCK "
" *
" Sets the cLock "
" *
* CaLL parameters Return parameters *
* *
* 01.L time in seconds 01. L time in seconds *
" 02 02 ??? *
" 03 03 ??? *
* AO AO ??? *
" A1 A1 preserved *
* A2 A2 preserved "
" A3 A3 preserved "
* " ***

MT .SUSJB

MT.TRAPV

Page 73

*** .. "
" TRAP #1 00=$8 MT .SUSJB "
" "
" Suspends a job "
" "
" Call parameters Return pa ramate pS "
" "
" 01.L job ID 01.L job ID " .. 02 02 preserved "
" D3.'tI timeout pe ri ad 03 preserved "
" AD AD base of job ctrl area "
" A1 address of flag byte A1 preserved "
" A2 A2 preserved "
" A3 A3 preserved "
" "
" Error returns: "
" "
" NJ not a valid job ID "
" " ***

A job
time
frame

may be suspended for an indefinite
has elapsed. The timeout period
ti me} •

period, or until a given
is up to ($7FFF times the

If the job ID is a negative word, then the current .job is
suspended. The flag byte is cleared when the job is released. If
there is no flag byte, then A1 should be O. If the timeout period
is specified as -1, then the suspension is indefinite; no other
negative value should be used. If the job is already suspended,
the suspension will be reset. All jobs are rescheduled.

" "
" TRAP #1 00=$7 MT.TRAPV "
" " " Set the per-job pointer to trap vectors "
" "
" Ca II parameters Return parameters "
" "
" 01.Ljob ID 01. L job ID "
" 02 02 preserved "
" 03 03 preserved " " AD AD base of job "
" A1 pOinter to table A1 ??? "
" A2 - A2 preserved "
" A3 A3 preserved "
" " " "

Note: When a routine in the table is entered as a result of an
exception, the CPU is in supervisor mode. The routine should
return with an RTE command (not RTS). Any registers used must be
saved and restored.

ID .CLOSE

ID .OELET

Page 74

14.0 I/O MANAGEMENT TRAPS

***************************************~*~~********************

" " " TRAP #2 00=$2 ID .CLOSE -

" -
" Closes a channe l -
" " " Ca Ll parameter's Return parameters "
" ..
" D1 01 preserved *
" 02 02 preserved ,.
" 03 03 preserved "
" AD channel ID AD ??? " " A1 A1 preserved " ,. A2 A2 preserved " ,. A3 A3 preserved "
" " ,. Error returns: " " " " NO channeL is not open " ,. ..

*** ,. ..
" TRAP #2 00=$4 ID. OELET "

" " ,.
"
" ,.
,.
,.
" ,.
"
"
" ,.
"
"
" "
" "

DeLete a fi Le

CaLL parameters Return parameters

01.L job ID (as file open!!)
02
03
AD address of channeL name
A1
A2
A3

Error returns:

01 ???
02 preserved
03 ???
AD ???
A1 ???
A2 .???
A3 preserved

NO not opened - too many channeLs open
OM out of memory
NF fiLe or device not found

~ BN bad fiLe or device name

" "
"
"
" ,.
"
"
"
"
"
"
"
'"
'" "
'"
'" ,.
" ***

IO.FORMT

"
"
..
"
" ,.
" .. ,.
"
" .. ,.

TRAP #2 00=$3 ID.FORMT

Format a sectored medium

Ca Ll parameters

D1
D2
03
AD
A1
A2
A3

ptr to medium name

Error returns:

OM out of memory
NF drive not found
IU drive in use
FF format failed

Page 75

" .. ,.
..

Return parameters "
01.W
02.\'1
D3
AD
A1
A2
A3

" number of good sectors*
total nr of sectors *
preserved *
???
preserved
preserved
p rese rved

.. ..
"
*
* ,.
"

The medium name is in the form of a character count (word]
followed by the ASCII characters of the drive name, the drive
number, underscore then up to 10 characters for the medium name.
For example, MDV1_November.

ID. OPEN

Page 76

,. ,.
'" TRAP #2 DO=$1 ID.OPEN "
" '"
'" Open a channel ..
'" '" .. Ca l L parameter's Return parameters ,.

" '"
'" D1 .L job ID ~. u. job ID '"
'" 02 D2 preserved '" .. 03.L code 03 preserved ,.
,.

0 old (exclusive) fi le or device
,.

'" 1 old (shared) file ..
'" 2 new (exclusiveJ file '"
'" 3 new (overwriteJ file '"
'" 4 open directory '"
'" AD address of channe l name AD channel ID ,.
'" A1 Ai preserved "
'" A2 A2 preserved '" .. A3 A3 preserved ,.
'" '"
'" Error returns: '"
'" '"
'" NO not opened - too many channels open '"
'" NJ job does not exi st '"
'" OM out of memory '"
'" NF file or device not found '"
'" EX file already exists '"
'" IU file or device in use '"
'" BN bad file or device name '" ,.

'" ***

If the job ID is passed as a negative word (for example -1J then
the channel will be associated with the current job.

The file or device name should be a string of ASCII characters.
This string is preceded by a character count (word), the pointer
should point to this word (on a word boundaryJ.

The error return "BN" indicates that the name of the device has
been recognised but that the additional information is incorrect,
for example CON_512y240.

The code is usually ignored for access to any non-shared
in practice, this is anything other than a file store.
error cQde is non-zero then no channel has been opened.

device:

Note that New (overwriteJ is not currently
Microdrive files.

supported

If the

for

Page 77

15.0 I/O TRAPS

FS .CHECK

FS.FLUSH

" "
'" TRAP #3 DO=$41] FS.GHECK "
" ..
" Check all pending operations on a fi le " ,.

"
'" Ca Lt parameters Return parameters " .. " ,. D1 01 ??? " ,. 02 D2 preserved '" ,. 03.W timeout 03.L preserved " ,. AD channel ID AD preserved " ,. A1 A1 ??? " ,. A2 A2 preserved "
" A3 A3 preserved "
" " ,. Error returns: ,.
"

,.
" NC not complete ,.
,. NO channe l not open ,.
" " ***

This trap is used to check whether all of the pending operations
have completed.

*** ,. ,.
,. TRAP #3 00=$41 FS.FLUSH ,.
,. ,.
,. Flush buffers for this file ,.
,.

"
" Call parameters Return parameters "
" "
" 01 01 ??? "
" 02 02 preserved "
" 03.W timeout 03.L 'preserved " " AD channe l ID AD preserved "
" A1 A1 ??? ,.
* A2 A2 preserved "
* A3 A3 preserved " * *
* Error retu rns: *
* * .. - NC not camp lete ,.
,. NO. channel not open ,.
*

,.

When a write operation to a file is complete, the data
still be in the Slave blocks rather than on the file.
details please see Section 5.2 on File I/O. This call
to check that a file is in a known state.

written may
For further
may be used

FS .HEADR

FS • HEADS

"
" TRAP #3 00=$47 FS.HEADR

"
" Read file header

"
" Ca Ll parameters

"
" 01
" D2.W buffer Length

" 03.W timeout

" AD channe l ID

" A1 base of read buffer

" A2

" A3

"
" Error returns:

"
" NC not comp lete

" NO channel not open

" 80 buffer overflow

"

Return parameters

Page 78

"

"
"

01.W
02
03.L
AD
A1
A2
A3

length of header read *
preserved
presarved
preserved
top of read
preserved
preserved

buffer

"

"
"
"
"
" "
"
"
" "

The read header call is provided so that a Job can allocate the
space for a load call as well as determining the characteristics
of a file. The buffer provided must be at least 14 bytes long.
In the case of a trap to a pure serial device, then the length of
the header returned in 01 will be spurious.

The file pointer is
after the header.
driver files are at

such that position zero
Thus block boundaries

positions 512"n-64.

is the first byte
on standard directory

" "
" TRAP #3 00=$46 FS.HEAOS "
" "
" Set file header "
" "
" Ca II pa rameters Return parameters "
" "
" 01 01.W length of header set "
" 02 02 preserved " .. 03.W timeout 03.L preserved "
" AO-~ channel ID AD preserved ..
" A1 base of header def A1 end of header def ..
" A2 A2 preserved ..
" A3 A3 preserved "
" Error retu rns: ..
" " .. NC not complete NO channel not open "
" ..

This call sets the first 14 bytes of the header.
file will normally be overwrittan by the filing
header is sent Over a pure serial device, then the
header are preceded by a byts $FF.

Page 79

The length of
system. When a
14 bytes ri f the

FS.LOAD

FS .MDINF

Page 80

******~** TRAP #3 DO=$48 FS. LOAD ,.
.. Load file into memory Call parameters Return parameters '" .. 01 01 ??? ..
.. D2.L length of fi le 02 preserved OS.W timeout 03.L preserved AD channe l ID AD preserved " .. A1 base address for load A1 top address after load" .. A2 A2 preserved ..
" '" A3 preserved " "" Error returns:
" NO channe l not open " ***

Files may be loaded into memory in their entirety with the
load trap. If the transient program area is used for this, a
#1 must have been invoked to reserve the space before the
load trap is invoked.

file
trap
file

03 should be set to -1 before both this trap, and FS.SAVE, and the
base address in A1 must be even.

" "
" TRAP #3 00=$45 FS.MOINF "
" "
" Get i nformati on about medium "
" "
" Call parameters Return parameters "
" "
" 01 01 .L empty/good sectors "
" 02 02 preserved "
" 03.W timeout 03.L preserved "
" AD channe l 10 AD preserved "
" A1 ptr to 1 D byte buffer A1 end of medium name "
" A2 A2 ??? "
" A3 A3 ??? "
" " "
" Error returns: " Ne not complete NO channel not open

The name of the medium, its capacity, and the available space may
be obtained for a file or directory that is open.

Page 81

The medium name is 10 bytes long and left justified. Any
remaining bytes are filled with the space character ($20).

The number of empty sectors is in the most significant word (msw]
of 01, the total Eve; lable on the medium is in the least
signi ficant werd [lsw).

A sector is 512 bytes.

FS.POSAB

FS.POSRE

Page 82

****************************.**********************************

"
"
"
"

"
" ,.
" ,.
,.
*
*
"
*
*
*
*

TRAP 113 00=$42 FS.POSAB

Position file pointer absolute

Ca II parameters

D1.L fi le position
02
03.W
AD
A1
A2
A3

timeout
channel ID

Error returns:

NC not camp l ete
NO channel not open
EF end of file

He:urn parameters

01.L new file position
02 preserved
D3.L
AD
A1
A2
A3

preserved
preserved
???
preserved
preserved

..
"
"
"
"

" "
"
"
*
*
*
"
,.
" ***

* *
" TRAP 113 00=$43 FS.POSRE "
* *
" Positi on file pointer relative *
" "
* Ca l l parameters Return pa rameters *
* *
* 01.L offset to file pointer 01 . L new fi le posi ti on *
" 02 02 preserved "
* 03.W timeout 03 preserved "
* AD channel ID AD preserved " * A1 A1 ??? *
* A2 A2 P rese rved *
* A3 A3 preserved "
* *
* Error retu rns: *
" *
" NC not comp lete *
" NO channe l not open *
" EF end of file "
* - *

If a file positioning trap returns an off file limits error, then
the pointer is set to the nearest limit, this being 0 or end of
file. The relative file positioning may, of course, be used to
read the current file position.

FS .SAVE

ID .EDLIN

Page 83

" "
" TRAP 4~ ".., 00=548 FS~SAVE "
" "
" Save file from memo ry "
" "
" Ca L l parameters Return pE ramete rs "
" "
" 01 01 ??? "
" 02.L Length of file 02 preserved "
" 03.\'1 timeout 03.L preserved "
" AD channel ID AD preserved '"
" A1 base address of file A1 top address of fi Le "
" A2 A2 preserved "
" A3 A3 preserved "
" " " Error retu rns: " " "
" NO channeL not open '"
" OF drive fu LL "
" " ***

In common with FS.LOAO, 03 shouLd be set to -1 before this trap,
and the base address in A1 must be even.

" " " TRAP #3 00=$4 ID. EDLIN "
" "
" Edit a line of characters " " [console driver only] "
" " " Call pa rameters Return parameters "
" "
" 01 cu rso rl li ne Length 01 cu rso rl line Length "
" 02.W Length of buffer 02 preserved " " 03.W timeout 03 preserved "
" AD channe L ID AD preserved "
" A1 pointer to end of line A1 pointer to end of line"

" A2 A2 preserved "
" A3 A3 preserved "
" " " Error returns: "
" "
" - NC not complete " " N~ channeL not open "
" BD buffer overflow "
" " ***

This is simiLar to the fetch line trap, except that the pointer A1
is always to the end of the line, 01 contains the current cursor
position in the msw and the length of the line in the lsw and the
line [from the current cursor position] is written out to the
console when the call is made. The line should not have a
terminating character when the trap is made, but the terminating

character will be included in
Enter [ASCII 10). up curSor
terminating characters.

Page 84

the character count on return.
er down cursor are all acceptable

IO .FBYTE

IO .FLINE

IO • FSTRG

Page 85

*** ,.
"

" TRAP #3 DO=$1 ID .FBYTE '"
" "
" Fetch a byte "
" "
" Call pa ramete rE Return pa rameters " " " " 01 01 . B byte fetched ~ ,.

D2 D2.L preserved "
" D3.W timeout D3.L preserved " " AD channe L ID AD preserved "
" A1 A1 ??? " " A2 A2 preserved "
" A3 A3 P rese rved "
" "
" Error re tu rns: "
" "
" NC not camp Lete "
" NO channe l not open " " EF end of file .. .,

" ***

" " " TRAP #3 00=$2 or 3 "
" "
" 00=$2 ID. FLINE fetch a line of characters terminated"

" by ASCII <LF) ($A) "
" 00=$3 IO.FSTRG fetch a string of bytes "
" "
" Call parameters Return parameters "
" "
" 01 01.W nr. of bytes fetched "
" D2.W length of buffer D2.W preserved "
" 03.W timeout 03.L preserved " " AD channel ID AD preserved "
" A1 base of buffer A1 updated ptr to buffer"

" A2 A2 preserved "
" A3 A3 preserved "
" " " Error returns: "
" "
" NC not complete "
" NO channel not open " ~

" EF end of fi le "
" BD-buffer overflow [fetch line only) "
" " ***

The character count of a fetch a line trap includes the linefeed
charecter if found.

See the entry for IO.FLINE for details.

ID .FEND

ID .S8YTE

..
"
"
" ..
" ..
" ..
"
"
"
"
"
"
"

TRAP #3 00==$0 ID.PEND

Check for pending input

Ca II parameters

D1
02
03.W
AO
A1
A2
A3

ti meout
channel ID

Error returns:

Return parameters

01
D2.L
0 ':1 ' ~.'-

AD
Ai
A2
A3

???
preserved
preserved
preserved
???
preserved
preserved

NC not complete [no pending input]
ND channel not open
EF end of fi le

Page 86

"

"

"
"
"
"
"
" ".
'"
"
"
" ..
" ***

This trap is used to check for pending input on a channel. It
does not read any data or modify the input channel in any way.

" *
* TRAP #3 DO=$5 ID .S8YTE "
* " .. Send a byte * .. *
" Call parameters Return parameters "
* D1 .8 byte to be sent D1 ??? ..
" D2 02.L preserved "
" D3.W timeout 03.L preserved "
" AD channel ID AO preserved " .. A1 A1 ??? "
" A2 A2 preserved "
* A3 A3 preserved "
" " " Error returns: " .. "
" NC not complete *
" - NO channel not open "
" DF·drive full "
" OR off window I paper etc " .. '" ***

ID .SSTRG

SO.ARC

SO.BOROR

Page B7

"'
TRAP #3 D 0:::$7 IO.SSTRG "'

" "
Send a string of bytes "

"' *'
" Call parameters Return parameters "'

'"
"' 01 D1.W nr. of bytes

D2.\II presarved
03.L preserved

sent "
,.
"
"

"
"
" ,.
"
"

D2.W nr of bytes to be sent
03.W timeout
AD channe l ID
A1 base of buffer
A2
A3

Error returns:

Ne flot complete
NO channeL not open
OF dri ve fu Lt

AO p rese rved
A1 updated ptr to
A2 preserved
A3 preserved

"
,.

buffer * ,.
"

"
" ,.
"
"
" ***

PLease refer to section 5.3.5 for detaiLs of the speciaL treatment
afforded to newLines on the consoLe or SCreen device.
See the entry for SO.POINT for detaiLs.

" "
" TRAP #3 OO=$C SO.BOROR "
" *
* Sets the border width and co Lou r *
" * ,. CalL parameters Return parameters "
"

,.
" 01.B co lou r 01 ??? "
" 02.W width 02.L preserved "
" 03.W timeout 03.L preserved "
" AO channe L ID AD preserved "
" A1 A1 preserved *
* A2 A2 preserved "
* *
* Error returns: "
* *
" NC not complete "
* NO channeL not open *
* " ***

This caLL redefines the border of a window. By defauLt this is of
no width. The width of the border is doubled on the verticaL
edges. The border is inside the window limits. All subsequent
screen traps (except this one) use the reduced window size for
defining cursor position and window limits.

SD.CHENQ

Page 88

As a special case, the colour $80 defines a transparent berder so
that the border contents are not altered by the trap.

If the call changes the width of the border, then the cursor is
reset to the home position [top left hand corner).

See the entry for SD.PXENQ for deteils.

SO.CLEAR

SO.CLRBT

SO.CLRLN

SO.CLRRT

SO.CLRTP

Page 89

********************************=******************************

"
"
*
"
"
"
"
"
"
"
'" '"
"
'"
"
"
"
"
'"
"
"
"
"

TRAP #3 00=$20 to 24

Clears part or all of a window

00=$20
00=$21
00=$22
00=$23
00=$24

SO.CLEAR
SO.CLRTP
SD.CLRBT
SO.CLRLN
SO.CLRRT

Ca II pa ramate rs

01
02
03.W
AD
Ai
A2

timeout
channel ID

Error returns:

NC not complete

clear
clear
clear
clear
clear

NO channel not open

all of window
top of window
bottom of window
cu rso r Line
ri-gh t hand end of cu rsa r

Return parameters

01 ???
D2.L preserved
OS.L preserved
AD preserved
A1 ???
A2 preservad

line

"

"

"
"
"
"
"
"
"
"
"
'"
"
'"
"
"
"
"

The clear window traps can clear all or
clear a part of a window the cursor is
clear operation consists of overwriting
designated area with paper colour.

part
used
all

of a wi ndow.
as a reference.
the pixels in

To
The
the

The division between the top of the window and the bottom of the
window is the cursor line. The cursor line is in neither the top
nor the bottom of the window.

The cursor line is the whoLe height of the current character fount
[either 10 or 20 rows) . The right hand end includes the character
at the current Cursor position.

See the entry for SO. CLEAR for detai ls.

. See the entry for SO.CLEAR for detai Ls.

See the entry for SO.CLEAR for details.

See ths'€lntry for SO.CLEAR for detai ls.

SD.CURE

SD.CURS

SD.ELIPS

Page 90

" "
" TRAP #3 OO=$E SD.CURE "
" Enable the cursor " .. " .. Ca l L parameters Return pe ramete rs ..
" "
" 01 01 ??? "
" 02 02.l preserved "
" OS.W timeDut 03.l preserved " ,. AD channeL ID AD preserved '" .. Ai Ai ??? ..
.. A2 A2 preserved
.. Error returns: ..
.. ..
" NC not camp lete " ,. NO channe l not open

The cursor is automatically enabled when a read line or Bdit line
trap is issued to a console window.

*** ,. TRAP #3 Oo=$F SD.CURS ,.
,.

* ,. Suppress the cursor .. ,. ,.
,. Ca II pa rameters Return parameters ,.
.. ,.
,.

01 01 ??? ,.
.. 02 o2.l preserved ,.
.. D3.W timeout D3.l preserved ,.
.. AD channe l ID AD preserved ,.
.. Ai Ai ??? ,.
* A2 A2 preserved ,.
,. ,.
,. Error returns: ,.
.. NC not c:omplete

,.
,. NO channel not open ,.
,. ,.

The calls to. suppress or enable the cursor do not return an error
if the cursor is already suppressed or enabled (respectively). as
they merely ensure that the cursor is in the desired state.

See the entry for SD.POINT for details.

SO.EXTOP

SO.FILL

Page 91

~********

" " " TRAP ~~ "., 00=$9 SD.EXTOP '"
"

,.
" Ca lls an extended operation "
" " " Call parameters Return parametars "
" "
" 01 parameter 01 parameter "
" 02 parameter 02 preserved "
" 03.W timeout D3.L preserved " " AO channe l ID AD preserved "
" A1 parameter A1 parameter "
" A2 start address of routine A2 preserved "
"

,.
,. Error returns: " ,.

"
" NC not complete "
" NO channe l not open " " and anything from the operati on routine "
"

,.

This trap invokes an externally supplied routine as if it were
part of the standard screen driver. 01, 02 and A1 are passed to
the routine, while only 01 and A1 are returned. The code within
the routine is executed in supervisor mode with AO pointing to the
channel definition block [see Section 7.2J and AB pointing to the
system variables as for standard device drivers.

" "
" TRAP #3 OO=$2E SO.FILL "
" "
" Fill rectangular block in window "
" "
" Call parameters Return parameters "
" "
" 01.B co lou r 01 ??? "
" 02 02.L preserved "
" 03.W timeout 03.L preserved "
" AO channel ID AO preserved "
" A1 base of block definition A1 ??? " " A2 A2 preserved "
" " " Error returns: " " "
" NG not comp l ete "
" NO channel not open " " OR block falls outside window "
'" " ***

This trap fills a rectangular block of a window with the current
ink colour, taking into account the mode set by SD.SETMD.

Page 92

The block definition is in the same form as the window definition.
It is 4 words tong: width, height, X origin and Yorigin. The
origin is referred to the window origin.

This is a fast way of drawing horizontal or vertical lines.

Page 93

SD.FLOOD

" "
'" TRAP #3 00=$35 SD.FLOOO "
" " ,. Turns area flood on and off ~* ,.

"
" Call parameters Return parameters " ,.

" ,. 01 .L key O=snd flood 01 ??? "
'" 1=start cr restart flood "
" D2 02 preserved "
" 03.W timeout 03.L preserved " ,. AD channel ID AD preserved "
" A1 A1 ??? "
" A2 A2 preserved " ,. A3 A3 preserved " " "
" Error returns: "
" ,.
" Ne not complete " ,. NO channel not open "
" " ***

SO.FOUNT

SO .GCUR

SD.LINE

SD.NCDL

SD.NL

SD.NROW

Page 94

~********#***

'" *
" TRAP #3 00=$25 SD.FOUNT '"
" " * Sets or resets the fount "
'" '" * Ca II parameters Return parameters '"
" *
" D1 01 ??? " .. 02 02.L preserved " '" 03.W timeout Dq I v.1.. preserved "
" AD channe l ID AD preserved * - A1 base of fount A1 ??? "
* A2 base of second fount A2 preserved '" " '"
* Error retu rns: '"
" "
" NC not compLete ..
" NO channe l not open " .. " ***

The character fount is a 5x9 array
A default fount and a second
although alternative founts may be

of pixels in a 6x1o rectangle.
fount are built into the ROM,
selected.

If the fount address is given as zero the default fount will be
used.

The structure of the fount assumes that up to a certain value
characters are invalid [default $1E), from the next value [default
$1F) a known number of characters are valid [default $61). Thus
the structure is as follows:

$00 lowest valid character [byte)
$01 number of val id characters-1 [byte)
$02 to $oA 9 bytes of pixels for the first valid character
SOB to $13 etc.

Each byte of pixels has the pixels in bit 6 to bit 2 [inclusive)
of the byte. The top row of any character is implicitly blank.

If a character, which is to be written, is found to be invalid in
the first fount, it is written using the second fount. If it is
also invalid in the second fount, then the lowest valid character
of the second fount is used.

The default fount extends from $20 to $7F.

See the entry for SD.POINT for details.

See the entry for SD.POINT for details.

See the entry for SD.POS for details.

See the entry for SD.PDS for details.

See the entry for SD.POS for details.

SO.PAN

SO .PANLN

SO.PANRT

SO.PCDL

SO.PIXP

Page 95

'"
'"
'"

'"

"
'" ,.
,.
,.
,.

'" ,.
,.
,.
,.
,.

TRAP #3 00=$18, 1E and 1F

Pans part or all of a window

00=$18
00=$1 E
DO=$1F

Catl

SD.PAN
SD.PANLN
SD.PANRT

parameters

01.\'1 distance to pan
02
D3.W timaout
AD channel ID
Ai
A2

Er ro r re tu rns:

NC no t camp l ete

pan all of window
pan cursor Line
pan right hand end of cursor line

Return parameters

01
02.L
D3.L
AD
A1
A2

???
preserved
preserved
preserved
???
preserved

NO channel not open

'"
'"
'"
'"
'"
'"
'" ,.
,.
,.
,.
,.
,.
,.
,.
,.
,.
,.
,.

The whole of a window, or the whole
right hand end of the cursor line
pixels to the right or to the left.
that the pixels will move to the
will be filled w~th paper colour.

of the cursor line, or the
may be panned by any number of

A positive distance implies
right. The space left behind

The cursor line is the whole height of the current character fount
[either 10 or 20 rows]. The right hand end includes the character
at the current cursor position.

See the entry for SO.PAN for detai ls.

See the entry for SO.PAN for detai ls.

See the entry for SO.POS for details.

*** ,. ,.
,. TRAP #3 00=$17 SO.PIXP ,.
,.

~ '"
'" Position cursor using pixel coordinates ,.
,. ,.
'" Call parameters Return parameters ,.
* *
* 01.1'1 X coordinate 01 ??? ,.
* 02.1'1 Y coordinate 02.l preserved ,.
* 03.1'1 timeout 03.l preserved *
* AD channel ID AD preserved * ,. A1 A1 ??? *
* A2 A2 preserved

,.
,. *

.. ..

Error returns:

Ne not camp l ete
NO channel not open
OR off wi ndow

Page 96

"
..
" ..

************************************#*#************************

The cursor position is the top left hand corner of the next
character rectangle referred to the top left hand corner of the
window. This trap clears the pending newLine in the window.

SO.POINT

TRAP -u,-,
rr~ 00;;:;$30

00;;:;$31
00=$32
00=$33
00=$34
00=$3S

SD.POINT
SO. LINE
SD.ARC
SO. ELIPS
SO.SCALE
SO. GCUR

Page 97

..

.. Plot a point, Line, arc~ ellipse, set scale or graphics :::::
cursor posl~ion. Expects parameters on the arithmetic *
stack pointed to by (A1J

Call parameters

01
02
03.W timeout
AD channe l ID
A1 arithmetic stack pointer
A2

Error re tu rns:

NC not complete
NO channel not open

Return parameters

01 ???
02.L preserved
03.L preserved
AD preserved
A1 ???
A2 preserved

..

These four traps draw various lines and arcs in the window. Any
point on these lines which falls outside the window will not be
plotted.

The format of the parameters required is as follows:

SD.POINT $00(A1J
$OS(A1 J

SO .LINE $00 (A1 J
$OS (A1)
$OC (A1)
$12(A1)

SD.ARC $00 (A1)
$OS (A1)
$OC (A1)
$12(A1)
$18(A1 J

SD.ELIPS $00(A1J
$OS(A1)
$OC (A1)
$12(A1)
$18(A1)

SD.SCALE $00(A1)
$OS(A1 J

y-coordi nate
x-coordinate

y-coord of finish of line
x-coord of finish of line
y-coord of start of line
x-coord of start of line

angle sUbtended by arc
y-coord of finish of line
x-coord of finish of line
y-coo rd of start of line
x-coo rd of start of line

rotation angle
radius of ellipse
eccentricity of ellipse
y-coord of centre
x-coord of centre

y position of bottom line of window
x position of left hand pixel of window

SD.GCUR

SOC [A1]

SOD (A1)
S06[A1]
$OC[A1]
$12[A1]

Page 98

length of Y axis [height of window}

graphics x coordinate
graphics y coordinate
pixel offset to right
pi xe l affse-t down

For all the graphics traps, the parameters on the A1 stack are
floating point, and coordinates are referred to an arbitrary
origin {default is 0,0] with an arbitrary scale (default is height
of window = 100 units).

The calling program must allocate at least 240 bytes on the A1
stack.

SO.PGS

SO.PROW

SO .PXENQ

Page 99

*************************-*********************-*.:::********-*******

..
'" ..
"
.. ,.
,.

"
'"
'"
'"
'"
'"
"
'"
'" .. ,.
'"
'"
'" ..
'"
'"

TRAP #3 00=$10 to 16

Cursor positioning by character intervals

00=$10 SO.POS
00=$11 so. TAB
00=$12 SD.NL
DO=$13 SO .PCOL
00=514 SO. NCDL
DO=$15 SD.PROW
00=$16 SO.NRO\'!

Call parameters

01.W column number
02.W raw number
03.W timeout
AD channe l ID
A1
A2

Error returns:

absolute position
tabulate
newline
previous column
next column
previous row
next row

Return parameters

[00=10,11) 01 ???
[00=1 0) 02.l preserved

D3.l preserved
AD preserved
A1 ???
A2 preserved

NC not complete
NO channel not open
OR position wouLd be out of window

'"
'"
'" ,.

"
..
'"
" ,.
,.
.. .. ,.
.. ,.
'" ..
'"
'"
'"
'"
'"
'" ***

In the case of an error return, the cursor position is not
changed. The cursor position is the top Left hand corner of the
next character rectangLe referred to the top Left hand corner of
the window. These traps clear the pending newline in the window.

See the entry for SO.POS for detaiLs.

'" .. ,. TRAP #3 OO=$A or B ..
'" '"
'" Returns the current window size and cursor position '" .. '" .. OO=$A SO.PXENQ enqui ry in pixeL coordinates '"
'" 00=$8 SO .CHENQ enqui ry in character coordinates ..
'" .. -,. Ca LL parameters Return parameters '" ,. ,.
,. 01 01 preserved ,.
,. 02 02 preserved ,.
,. 03.W timeout 03.l preserved ,. ,. AO channeL 10 AO preserved ,.
.. A1 base of enquiry bLock A1 ??? .. ,. A2 A2 preserved ,. ,. ,.
,. Error re tu rns: *

Page 100

"
" Ne not camp lete

NO channel not open

The window size (X,Y)
word enqu ry block.
cursor pas tion 0,0.
in th e wi-n ow ~

and curSor position (X,Y) are put into a 4
The top left hand Corner of the window is

These traps activate the newline if pending

SD.RECDl

SD.SCALE

SD.SCRBT

SD.SCROL

Page 101

" •
" TRAP #3 00=$26 SD .RECOl "
" "
'" Reco lau r a window " • '"
" Call parameters Return parameters '"
'" '"
'" D1 01 ??? "
" 02 D2.L preserved " ,. 03 ~W timeout 03.L preserved " " AD channe L ID AD preserved " .. A1 pointer to co lcu r list A1 ??? ..
'" A2 A2 preserved ..
'" ..
'" Error returns: '"
*' NC not complete ,.
.. NO channe l not open .. ,. ..

A window may be recoloured without changing the information in it.
This allows the same sort of effects as resetting the attributes
of an attribute based screen, but it is very much slower.

The colour list is 8 bytes long and should contain the new colours
required for.each of the 8 colours in the window. Each of the new
colours must be in the range 0 to 7. For 4 colour mode, only
bytes 0, 2, 4 and 6 need to be filled in.

See the entry for SD.POINT for details.

See the entry for SD.SCRDL for details.

*** TRAP #3 00=$18 to 1A Scrolls part or all of a wi ndow DO=$18 SD.SCROL scro II all of window 00=$19 SD.SCRTP scro II top of wi ndow DD=$1A SD.SCRBT scro II bottom of window ,.
.. Call parameters Retu rn parameters D1.W distance to scro II D1 ??? D2 D2.L preserved

,.
.. D3.W timeout D3.L preserved AD channel ID AD preserved A1 A1 ??? A2 A2 preserved ,.
.. Error returns: ,.
.. NC not complete ..

SD.SCRTP

Page 102

NO channel not open
* *
~***~***********************#*****~***************************

Part or all of a window may be scrolled; for partial scrolling
the cursor is used as a reference. -rness traps Cause pixets to be
transferred from one row to anather4 Vacated rows of pixels are
filled with paper colour. A positive scroll distance implies that
the pixets in the window will be moved in a positive direction,
le, downwards. The space left behind will be filled with paper
colour.

The division between the top of the window and the bottom of the
window is the cursor line. The cursor line is inoluded in neither
the top nor the bottom of the window. The cursor is not moved.

See the entry for SD.SCROL for details.

SO.SETFL

SO.SETIN

SO.SETMO

Page 103

"
"
"
,.
,.
"
"
"
"
"
"
"
"
"
"
"
" ,.

TRAP #3 DO=$2A and 28

OO=$2A
00=$28

Set flash and undeiscore

SD.SETFL set flash
SD.SETUL set underscore

Call paramEters Return paremeters

01.80 attribute off
else attribute on

02
03.W
AD
A1
A2

ti meout
channe l ID

Error returns:

NC not complete
NO channel not open

01

02.L
03.L
AD
A1
A2

???

preserved
preserved
preserved
???
preserved

,.
"
"
"
"
"
"
"
" ,.
"
"
'"
" ,.
" ***

See the entry for SO.SETPA for details.

*** ,.
" ,.
"
"
" ,.
"
" ,.
" ,.
,.
" ,.
,.
,.
,.
,. ,.
,.
,.
"

TRAP #3 OD=$2C SO.SETMO

Sets the character writing or plotting mode

Ca l l parameters Return parameters

01.W

02
03.W
AD
A1 '::
A2

mode
-1
o
1

01 ???
ink is exclusive ored into the background
character background is strip colour
character background is transparent

o or 1 plotting is in ink colour

timeout
channel ID

02.L preserved
03. L preserved
AD preserved
A1 ???
A2 preserved

Error returns:

NC not complete
NO channel not open

,.
,.

"
" ,.
*
*
"
*
*
"
"
*
*
"
"
" ,.
"
" ,.
" ,.

SD.SETPA

SD.SETST

SD.SETSZ

"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
" "

TRAP #3 00::::$27 to 29

Set screen colours

00=$27
00=$28
00=$29

SD.SETPA
SD.SETST
SO .SETIN

Ca II pa rameters

01 .8
02
03.W
AD
A1
A2

co lou r

timeout
channe l ID

Error returns:

NC not comp l ete

set paper coLour
set strip coLour
set ink colour

Return parameters

01
02
03.L
AD
A1
A2

preserved
preserved
preserved
preserved
???
preserved

NO channel not open

Page 104

"

"
"
"
"
"
"
"
"
"
"
"
"
"
" ***

The screen driver uses three colours. There is the background
colour of a window: referred to as paper colour; this is the
colour which is used by the scroll, pan and clear operations.
There is the colour which is used by the character generator to
provide a highlighting background for individual characters or
words: referred to as strip colour. Finally, there is the colour
used for writing characters and drawing graphics: referred to as
ink colour.

See the entry for SO.SETPA for details.

"
"
"
"
"
"
"
" "
"
"
"
"
"
"
"
"
"
"

TRAP #3 00=$20 SD.SETSZ

Set character size and spacing

Call parameters Return parameters

01,W character width/spacing 01 ???
- 0 single width, 6 pixel spacing

1 single width, 8 pixel spacing
2 double width, 12 pixel spacing
3 double width, 16 pixel spacing

D2.W character height/spacing D2.L preserved

D3.W
AD
A1
A2

o single height, 10 pixel spacing
1 double height, 20 pixel spacing
timeout D3.L preserved
channe l ID AD P rese rved

A1 ???
A2 preserved

"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"

* Error returns:

NC not complete
NO channel not open

*

Page 105

*
*
*

*

The character generator supports two widths and two helgn~s of
character. In 8 coloup mods, only the doubte width characters may
be used. In addition the spacing between characters is entirely
flexible, but for simplicity of use only two additional sp2cings
are supported directly: these are 8 pixel and 16 pixel, in single
and double width respectively.

Calls with D1=0 or 1 in 8 colour mode will operate as though a
call had been made with D1 equal to 2 or 3.

SD.SETUL

SD.TAB

SD.WOE;::

See th e entry for SD.SETFL :
1l.J, details.

See the entry for SD~POS for details.

" ,. TRAP #3 00=$0 SO. WOEF ,.
" Redefines a window ,.
,. Call paiamaters Retu rn parameters ,.
,.

01 • B border co lour 01 ??? ,. 02.W border width 02.L preserved ,. 03.W timeout 03.L preserved ,. AD channel ID AD preserved ,. A1 basa of window block A1 ???

" A2 A2 preserved ,.
,. Error retu rns: ,.
,. Ne not comp l ete ,. NO channel not open ,. OR window does not fit on page ,.

Page 106

"
"
"
"
"
" ,.
"
* ,.
* ,.
,.
,.
,.
,.
,.

" ,.
,.

This call redefines the shape or position of a window: the
contents are not moved or modified, but the cursor is repositioned
at the top left hand corner of the new window. The window block
is 4 words long and is the width, height, X origin and Yorigin.

Page 107

16.0 VECTOR EO ROUTINES

BP.INlT

BP. LET

*
* Vector $110 BP.INIT

~*************=****

All addresses passed to this routine must be relative to AS.

BP.IN!T is used to link in a list of procedures and functions to
be added tp the SuperBASIC name table. Once added, the functions
can be called from SuperBASIC in the same way as the procedures
and functions built in to the ROM.

On entry, A1 should point to a table in the following form:

word approximate number of procedures [see below)

for each procedure
[word pointer to routine - here
[byte length of name of procedure
[characters

word
word

o
approximate number of functions (see below)

for each function
(word pointer to routine - here
(byte length of name of function
(characters

word 0

The "approximate number" of procedures or functions is used to
reserve internal table space. It should be exactly equal to the
number of procedures

or functions unless the average length of the procedure or
function names exceeds 7, in which case it should be:

(total number of characters + number of functions or procedures +
71~

The pointers to the routines are relative to the address of the
pointer.(e.g. DC.W ENTRY-*)

All register~ except A1 are preserved by BP.INIT and no more than
4B bytes are used on the user stack.

* *
* Vector $120 BP.LET *

* *

All addresses passed to this routine must be relative to AS.

Page 108

BP.LET assigns a value to be associated with an entry in the
SuperBASIC name table. On entry, (AB,A3) shouLd pOint to the name
table entry, and fAS,A1) should point to the value to be assigned
(see Section 9.5 for details of the storage format for the various
types of datal. A1 and A3 should be on word boundaries.

The type of the entity to be assigned (and hence its Lengthj is
determined by the type in the name table entry.

On exit, DO is an srror code~ and 01, 02, 03, AO~ A1 and A2 are
smaShed.

BV.CHRIX

CA.GTFP

CA .GTINT

CA.GTLIN

CA .GTSTR

Page 109

" "
" Vector S11A EV.CHRIX "
" ***

All addresses passed to this routine must be ralative to AS.

BV.CHRIX is uSed to reserve space on the arithmetic stack (A6,A1).
On entry, the number of bytes required should be in DOeL: DO to
03 are smashed.

Since not only the stack but the whole SuperBASIC area may move
during the call, the arithmetic stack pointer should be saved in
BV_RIP[A6], whence it should be retrieved after the call has been
completed.

See the entry for CA.GTINT for details.

" " " Vector $112 CA. GTINT "
" $114 CA .GTFP "
" $11B CA. GTSTR "
" $11 B CA .GTUN "
" " ***

All addresses passed to these routines, must be relative to AB.

These routines are used to get the values of
SuperBASIC procedures or functions onto
Each routine assumes that all the parameters
type, as follows:

1B-bit integer
floating point
stri ng

actual parameters to
the arithmetic stack.
will be of the same

CA.GTINT
CA.GTFP
CA .GTSTR
CA .GTUN floating point: convert to 32-bit long integer

On entry,
parameter
last.

[AB,A3] points to the name table entry for the first
in the list, and [AB,A5) points to the entry for the

The number of parameters fetched is returned in the least
significant word of 03. The values themselves are returned in
order on-the arithmetic stack [AB,A1] with the first parameter at
the top [lowest address] of the stack.

These routines smash 01, 02, 04, DB, AD and A2. DO, and also the
condition codes, give the error code. The separator flags in the
name table entries are also smashed.

See the entry for CA.GTINT for details.

See the entry for CA .GTINT for deta; ls.

Page 110

CN. STOIS See the entry for CN.OTOF for details.

eN .BTOIL egg
VVv the entry far CN.OTOF for deta; ls.

CN.BTOIW See the entry fer CN.OTOF for details.

CN.DATE

CN.DAY

CN.OTOF

Page 111

'" "
'" Vector SEC eN.DATE get date and ti me '"
" $EE CN.DAY get day of week "
* " " Call pe ramete rs Return pe rametars "
'" '"
'" D1.l date (internal va lue) 01 preserved "
" 02 02 preserved "
" 03 03 preserved "
" AD AD preserved "
" Ai pointer to stack A1 pointer to stack "
" A2 A2 preserved "
" A3 A3 p rese rved "
'" " ***

ALL addresses passed to these routines must be reLative to A6.

These are two date conversion routines: CN.OATE returns the date
in the form yyyy mmm dd hh:mm:ss, CN.DAY returns a three letter
day of the week. The result is put on the A1 stack in string
format. At least 22 bytes are required by CN.DATE and at least 6
bytes by CN.DAY.

See the entry for CN.DATE for details

'"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
" "
"
"
"
"

Vector $100 CN.DTOF floati ng poi nt
integer $102 CN. DTOI

&$104 CN. BTOIB
&$106 CN. BTOIW
&$108 CN. BTOIl
&$10A CN. HTOIB
&$10C CN. HTOIW
&$10E CN.HTOIl

binary (byte)
binary (word)
binary (long)
hex (byte)
hex (word)
hex (long)

Call parameters Return parameters

01
02
03
07
AO
A1 ,
A2 -
A3

o or ptr to end buffer
pointer to buffer
pointer to stack

01
02
03
07
AO
A1
A2
A3

???
???
???
preserved
pointer to buffer
pointer to stack
???
???

"
"
"

"
"
"
"
"
"
"
"
"
*
"
"
"
"
"
"
"
" * Error returns: "

"
*
"
"

XP " error in conversion (eg 1 .. 0 as floating pt.. *
or no digits or too many hex or binary digits] "

" ***

All addresses passed to these routines, must be relative to AS.

CN.DTOI

Page 112

Utilities marked & are non-functioning in V1.03 and earlier.

These rour;ines convert from ASCII charac-ters in a buffer (pointed
to by AD J to a VE lue on the st-8ck (po; nted to by A1] .

The hex and
long word
significant
conversions.

binary conversions from ASCII to number, always put a
on the A1 stack. A1 is set to pOint to the least
byte or less significant word far the byte and word

The decimal conversions may use up to about 30 bytes on the A1
stack.

If there is an error
Otherwise, on return,
point, long word, word
character in the buffer.

then AD
A1 poi nts
or byte]

and A1
to the

and AD

See the entry for CN.OTOF for details

are both unchanged.
return value (floating
points to the next

CN.FlOo

CN.HToIB

CN.HToIL

CN .HToIW

CN.IToBS

CN .ITOBl

CN.IToSW

CN.IToo

CN .ITDHB

CN. IToHl

CN.ITDHW

"
"
"

"

"
*
*
"
"
"
"
"
"

Vector $FO CN.FTOO
$F2 CN .ITOD
SF 4 CN. IToBS
$F6 CN. ITOBW
$F8 CN. IToBL
$FA CN. IToHB
SFC eN. ITOHW
$FE CN. ITOHL

Ca II ps rameters

01
02
03
AD
A1
A2
A3

pointer to buffer
pointer to stack

floating point
integer
binary (byte)
bi ne ry (word)
binary (long)
hex (byte}
hex (word)
hex (Long J

Return parameters

DO ???
01 ???
D2 ???
D3 ???
AO pointer to buffer
A1 pointer to stack
A2 ???
A3 ???

Pege 113

"

"
"
"

"
"
"
"
"
"
"
"
"
"
"
"
" ***

ALL addresses passed to these routines must be reLative to AS.

These routines convert a vaLue on the stack (pointed to by A1) to
a set of ASCII characters in a buffer (pointed to by AD).

See the entry for CN.OToF for detai ls.

See the entry for CN.OTOF for details.

See the entry for CN.OTOF for detai Ls.

See the entry for CN.FTOD for detai Ls.

See the entry for CN.FToD for detai Ls.

See the entry for CN.FToo for detaiLs.

See the entry for CN.FToo for details.

See the entry for CN.FTOo for detaiLs.

See the- entry for CN.FToD for detai Ls.

See the entry for CN.FToD for detaiLs.

ID • NAME

Page 114

#

'"
'"
'"
"
"
'" ,.
'"
"
"
,.
,.
,.
,.
,.
,.
'"

VectoT $122 ID. NAME

DeeD_des a dev i CH name

Call parameters

01
02
03
AD
A1
A2
A3

pointer to name

pointer to parameters

Error returns:

not recogni sed

Return parameters

01 ???
02 ???
D3 ???
AD preserved
A1 ???
A2 ???
A3 preserved

ERR.NF
ERR.BN name recognised - but bad parameters

"
'"

"
"
'"
'" ,.
,.
,.
,.
" ,.

This routine parses a device name. Given a device name and a
description of the syntax of the name to be checked against and
for the possible parameters to be appended to it, the routine
determines whether the name is recognised, and extracts the
parameters if it is. The device name is formed using four
components:

Name
ignored.
Separator
Number
Code

ASCII characters, normally letters. Case is

Single ASCII character. Case is ignored.
Decimal number in the range 0 to 32767
One of a list of ASCII characters

On entry to the routine, AD must point to the device name (which
is in the usual Odos string format], A3 must point to an area of
memory which is sufficient to hold the decoded parameter values,
and AS must point to the base of system variables. The device
description starts 6 bytes after the call, and is in the following
format:

word number of characters in the device name to be checked
for
words the characters of the device name to be checked for
word number of parameters
For eacn_parameter, one of the following options:

byte space, byte separator, word default value (numeric
with separator]

word negative number, word default value (numeric with
no separator]

word positive number of possible codes, bytes for the
ASCII codes

Note that all letters must be in upper case.

Page 115

For each numeric parameter value in the description, the
will return either the value given in the device name,

ut i l i Y
or the

default. For each list of codes in the description the utility
will return the pOSition of the code in the list 1 or zero.

Examples:

The CON description is:

3,' CDN'
5

cansa Le DC.W
DC.W
DC.W
DC.W
DC.W

I _I f448~ I XI,180
1 AI ,32,! XI,16

five parameters
window size
window position
keyboard queue length , _' ,128

Device name

CON
CON_255
con_50
conaox12
con_256x54a54x128_20

Parameters

448 ,1 80 ,0 ,0 ,1 28
256,180,0,0,128
448,180,0,0,50
448,1 80 ,IL 1£, 128
256.64.64.128,20

ID .DEOF

ID.OIN

ID .QOUT

ID . aBET

ID .QTEST

The SER descr-iption is:

oc.w 3
7

I SER 1

DC.W 4
DC.W -1 ,1
DC.W 4,! GEMS I

DC.\'! 2 T I rH I

DC. V1' 3, 'RZC!

Device name

SER
SERE
58 r2m iZ

RS232 serial device
fou r pe ramstars
port number [default 11
parity lodd/aven/mark/spacaJ
ignore/use handshaking
Raw/use CTRLZ/use CR

Parameters

1,0,0,0
1,1,0,0
2,3,1,2

Page 116

If the name is not matched, the routine returns immediately after
the ca II wi th
ERR.NF in DO. If the name is matched but the additional
i nfarmati on is
incorrect, it returns 2 bytes after the call with ERR.BN in DO. If
a match is
found, it returns 4 bytes after the call with 00=0.

See the entry for IO.aBET for details.

See the entry for IO.QSET for details.

See the entry for IO.aBET for details.

Vector $OC IO.QSET
$OE ID. QTEST
$EO ID .OIN
$E2 ID .QOUT
$E4 ID .DEOF

Call parameters

set up a queue
test status of queue
put byte into queue
extract byte from queue
put end of file marker into

Return parameters

queue

01 queue length or data
02

data
preserved/free space
preserved 03

AD preserved
A1 preserved

preserved

,.
,.
,.
,.
,.
,.
,.
,.
,.
,.

,.
,.
,.
,.
,.
,.
,.
,.
,.
,.
,.
,.
,.
,.
,.
,.
,.
,.
,.
,. ,.
,.

A2 pointer to queue
A3- .

01
02
03
AD
A1
A2
A3 modified by QIN, QOUT, ,.

QTEST,aBET
Error returns:

ERR.NC queue is full (OIN) or empty (QOUT, UTEST)
ERR.EF end of file reached (QOUT, UTEST)

,.
,.
,.
,.

See the entry for ID.aBET for detai ls.

IO.SERIO

IQ .SERG.

Page 117

See the entry for ID.SER!1 for detai Ls.

****-************************************:::********#*************
"
"
"

" *
"
"
"
"
" "
"
"
"
" "
"
"

Vector $E8 ID.SERQ
SEA ID. SERIO

CalL parameters

D1 standard lOSS
02 standard TOSS
03 standard ross
AD standa rd ross
A1 standard ross
A2
A3

Error returns:

direct queue handling
general ID handling

Return parameters

value 01 standard lOSS
value D2 standard ross
value D3 ???
value AD preserved
value A1 standard lOSS

A2 ???
A3 ???

ERR.BP undefined action
or errors returned from supplied routines

value
value

value

" "
"
"
" "
"
"
"
"
"
"
"
"
"
"

These routines must be called from supervisor mode, with AS
pointing to the base of system variables. It may not be called
from a task which services an interrupt.

IO.SERU is a direct queue handling routine. When the channel
definition block is set up for simple serial I/O then the 7th and
8th long words should be set to point to the queues for input and
output respectively. If either input or output is prohibited,
then the corresponding pointer should be zero.

IO.SERU should be called with standard ross values in DO, D1, D2,
D3, AD and A1.

For serial I/O where the operations for byte input and output are
not so simple, the routine IO.SEAIO may be called. The call
instruction should be followed by three long words, these being
the entry addresses for

testing for pending input, [next byte in D1)
fetch byte, [byte in 01)
send byte. [byte in D1)

The use'of absolute addresses for these may prove awkward; so the
entry to this routine is best included in the physicel definition
block for the driver:

at $28[A3) or similar

387800EB
4E94

4E75

MOVE. W
JSR
DC.L
DC. L
DC.L
RTS

$E8,A4
[A4)
TEST
FETCH
SEND

or

DC.L
DC.L
DC.L

4E75 RTS

TEST
FETCH
SEND

invoked by or

JSR $28(A3] PEA
MOVE.W
JMP

Page 118

$28(A3)
SE8,A4
[A4J

For the calls to the three service routines DO snouLd be returned
as the error code, 01 to 03 and Ai to A3 inclusive are volatile.

Both of these ca LLs treat acti ens 0 7 1, 2, 3, 5 and 7 J the heads r
set and read actions and load and saVe: for undefined actions
they return ERR.BP.

MD .READ

MD.SECTR

MD.VERIN

MD.WRITE

Page 119

**********************************~**~*************************

"
"

"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"

Vector $124 MD.READ
$126 MD. WRITE
$128 MO. VERIN
$1 2A MD. SECTR

CaLL parameters

read a sector
write a sector
verify a sector
read a sector header

Return parameters

01
02
D7
AD

"
"
*

"
01
02
07
AD
Ai
A2
A3

pointer to start of bufr Ai
A2

fi Le nr {read/verify] '*
block nr (read/verifyl*
sector nr (read haadr}*
??? '*
pointer to end of bufr*
??? *

$18020 A3 $18020

Error returns:

MD. WRITE none
MD.READ, MD.VERIN

MD.SECTR

norma l - fai led
return+2 OK
normal - bad medium
return+2 bad sector header
retu rn+4 - OK

"
"
"
"
" "
'"
'"
"
"

The microdrive support routines are vectored to simplify the
writing of file recovery programs. On entry A3 must point to the
microdrive control register, and the interrupts must be disabled.
All registers except A3 and A6 are treated as volatile.

These routines do not set DO on return but have multiple returns.

Before calling MD.WRITE the stack pointer must point to 2 words:
the file number and the block number of the sector to be written.

These vectors point to $4000 bytes before the actual entry point.
The following code may be used:

MOVE.W aa.aaaa,An
JSR $4000 (An)

See the entry for MD.READ for details.

See the_~ntry for MD .READ for detai ls.

See the entry for MD.READ for details.

MM.AlCHP

MM.AllOC

Page 120

~******

"
"
"
"
"
"
"
"
"
"
"
" "
"
"
"
" ..

Vector SCD MM.AlCHP "
Allocate common heap area

Ca L l parameters Return parameters "
01 . L space requi red
02
03
AD
A1
A2
A3

Error returns:

OM aut of memory

01.l
02
03
AD
A1
A2
A3

space
???
???
base
???
???
???

a lloca ted ..
"

of area allocated*

"
"
"
"
" ***

This routine must be called from supervisor made, with A6 pointing
to the base of system variables. It may not be called from a task
which services an interrupt.

The space requested must include room far the heap entry header.
For simple heap entries this is 16 bytes long, for lOSS channels
this is 24 bytes long.

The address of the heap area is the base of the area allocated,
not the base of the area which may be used (contrast with trap #1
00=$18 and $19).

The area allocated is cleared to zero.

*** .. "
" Vector $08 MM.ALlOC "
" A lloca tes an area in a heap "
" "
" Call parameters Return parameters " " "
" 01 . l length requi red 01. L length allocated "
* 02. 02 ??? ..
* 03 • 03 ??? *
* AD ptr to ptr to free space AD base of area a lloca ted"
* A1 A1 ??? *
* A2 A2 ??? A3 A3 ??? * .. * .. Error returns: *
* * .. OM no free spece large enough "
" ..

Page 121

See section 4.1 for details D-f the heap allocation mechanism.

MM.LNKFR

MM.RECHP

Page 122

****************=**

'" "
" Vector SuA MM.LNKFR "
" "
" Li-nks a free space (back] into a heap "
" "
" Ca LL parameters Return parameters "
" "
" Dial Length to link in 01 ??? "
" 02 02 ??? "
" 03 03 ??? "
" AD base of new space AD ??? "
" A1 ptr to ptr to free space A1 ??? "
" A2 A2 ??? "
" A3 A3 ??? "
" " ***

" "
" Vector $02 MM.REOHP "
" "
" Releases common heap space "
" "
" Call parameters Return parameters "
" "
" D1 01 ??? "
" 02 02 ??? "
" 03 03 ??? "
" AD base af area to release AD ??? "
" A1 A1 ??? "
" A2 A2 ??? "
" A3 A3 ??? "
" " ***

This routine must be called from supervisor mode, with AS pointing
to the base of system variables. It may not be called from a task
which services an interrupt. See entry for MM.ALCHP

RLEXEC
RI.EXECB

Page 123

'"
"
"
"
"
"
"
"
"
" ..
"
"
"
"
"
"
"
"

Vector $1iC RI.EXEG
511 E RI. EXECB

executes an oper_8tion
executes a list of operations

Ca Ll par-ametsrs Return parameters

DO.W ape rat; on (RI.EXECJ DO error code
01 01 preserved
02 02 preserved
03 03 preserved
AD AD preserved
Ai pointer to arith stack Ai updated
A2 A2 preserved
A3 ptr to operation list A3 preserved
A4 ptr to base of var area A4 preserved

Error returns:

DV arithmetic overflow

'"
'"
"
"
"
"

"
"
"
"
" "
"
"
"
" ***

All addresses passed to these routines must be relative to AS.

The arithmetic package is available for general use through two
vectors: the first executes a single operation; the second
executes a list of operations.

The package operates on floating point numbers on a downward stack
pointed to by [AS,Ai .L) . It operates on the top of the stack
[TOS) which is pointed to by [AS,Ai.Ll, and the next on stack
[NOS) at S[AS,Ai.Ll.

See section 9.5 for details of the floating point format.

The interpreter takes two types of operation codes. The first is
a true arithmetic operation with an operation code between $02 and
$30 inclusive, the second is a negative code between $FFFF and
$FF3i inclusive: this indicates a load or store operation of a
floating point number to or from the location given by the
calculation [AS.L+A4.L+opcode!FFFE). If bit 0 of the opcode is
clear the operation is a load [Ai decremented by S, creating a new
TOS) , if it is set the operation is a store [Ai incremented by S,
NOS--)TOS)

For RI.EXEC the operation code should be passed as a word. For
RI.EXECB the' operation codes are in a table of bytes pointed to by
A3. The table is terminated by a zero byte.

Note: for the function EXP, 07 should be set to zero or an
erroneous value will be returned.

The operation codes for the interpreter are as follows:

CODE function change to Ai

UT .COM

UT.CSTR

UT.ERRO
UT .ERR

S02 RI.NINT
$04 RI.INT
S06 R!.NUNT
S08 RI. FLOAT
SOA RI-ADD
sac RI.SU8
SOE RI.MULT
$10 RI.DIV
$12 RI.ASS .. " "'1""1' RI.NES
$16 RI.OUP
$18 RI.COS
$1A RI.SIN
$1C RI-TAN
$1 E RLCOT
$20 RI.ASIN
$22 RI.ACoS
only
$24 RI.ATAN
$26 RI.ACoT
$28 RI.SooT
$2A RLLN
$2C RI.LOG1o
$2E RI.EXP
$30 RLPOWFP

Page 124

nearest integer to TDS +4
truncate TOS to integer +4
nearest long integer to TDS +2
intege~ TOS to floating point -4
add TOS to NOS +6
subtract TOS from NOS +6
multiply TOS by NOS +6
divide TOS into NOS +6
positive value of TOS 0
negate TOS 0
duplicate ToS -6
cosi ne
sine
tangent
cotangent
arcsine
a reeDsi ne

arctangent
arccotangent)
squa re root)

change TOS

Ai unchanged

natural logarithm
logarithm to base 10
exponenti a l)
NOS to the power of TOS +6

See the entry for UT.WINOW for detai ls

,.

,. Vector $E6 UT.CSTR ,. ,. ,.
,. Compares two strings ,.
,.
,. Call parameters Return parameters #

,. DD.S compa ri son type DD.L -1, o or +1 ,.
,. D1 D1 preserved ,.
,. D2 02 preserved ,.
,. 03 03 preserved ,.
,. AD base of string 0 wrt A6 AD preserved ,.
* Ai base of string 1 wrt A6 Ai preserved ,.
,. A2 A2 preserved ,.
* A3 A3 preserved * ,. A6 base address register A6 preserved ,.
*

,.
*******~***************~***************************************

All addresses passed to this routine must be relative to A6.

00 (and the status register) is set negative if the string at
(A6,Ao) is less than the string at (AS,Ai) etc.

*
* Vector $CA UT.ERRO write error message to channel 0

,.

"
"
"

"
"
"
"

SCC UT. ERR

Call parameters

DO.l error code
01
02
03
AD channe l ID
A ..
MO

A2
A3

Page 125

write error message to given channel *
*

Return parameters

OO.l preserved
01 preserved
D2 preserved
03 preserved

(UT. ERR only] AD p rese rved
Ai preserved
A2 preserved
A3 preserved

,.
"
"
"
"
"
"
" ***

These routines must be called from USer mode.

These routines exist for writing simple messages to a channel.
They are basic error message handlers which write a standard or
device driver supplied error message to either the command channel
0, or elsa to a defined channel.

UT. LINK

Page 126

*************#**************************=************-**********
" "
" Vector 502 UT. LINK link an i tern into a list "
'" $D4 UT.UNLNK unLink an i tern from a list "
'" "
" Ca II parameter-s Retu rn parameters "
" "
" 01 01 preserved "
" 02 D2 preserved "
" D3 03 preserved "
" AD base of i tern (un) linked AD preserved "
" A1 pointer to previous i tern A1 updated "
" A2 A2 preserved "
" A3 A3 preserved "
" " ***

These two routines are provided for handling linked lists.

These routines are passed the base address of the item to be
linked or unlinked, and a pointer which pOints to either the
pointer to the first item in the list, or to an item in the list.

When an item is
th e list, 0 r ,
that item.

linked in, it will be linked in at the start of
if the pointer was to an item in the list, after

When an item is removed, the pointer may point to the pointer to
the first item in the list, or to any item in the list before the
item to be removed.

When starting a new list, the pointer to the first item in the
list must be zero.

Each item in the list must have 4 bytes reserved at the start for
the link pointer.

UT.MINT

UT.MTEXT

Page 127

************************~**************************************

"
"

"
"
"
"
"
"
"
"
"
"

Vector SCE UT.MINT "

Call

01.W
02
03
AD
A1
A2
A3

Error

" Converts an integer to ASCII adds a space and sands *
it to the defined channel *

" ps rameters Retu rn ps rameters "
" integer value 01 ??? "

D2 ??? '" 03 ??? ,.
channe l ID AD preserved " A1 ??? " A2 preserved " A3 preserved "

'" retu rns: "
" All the usua l ID "
" " ***

This routine aught usually be called from user made.

" "
" Vector $00 UT.MTEXT "
" "
" Sends a message to a channe l "
" "
" Call parameters Return parameters "
" "
" 01 01 ??? "
" 02 02 ??? "
" 03 03 ??? "
" AD channe l ID AD preserved "
" A1 base of message A1 ??? "
" A2 A2 preserved "
" A3 A3 preserved "
" "
" Error returns: "
" "
" All the usual ID "
" " ***

This routine aught usually be called from user made.

The above routines (UT.MINT and UT.MTEXT) are provided to write
parts of mare complex messages to a defined channel.

The message is in the form of a text string: number of characters
(word) followed by the characters in ASCII. If a new line is
required at the end of the message, this should be included in the
message. If the channel is 0 then 03 will be returned 0,
otherwise 03 will be returned -1. In version V1.03 and earlier,

-DO is set to the error return but is not
codes will not be correct. As a special

Page 128

tested so the condition
concession, interrupt

Servers and other supervisor mode rou~ines can call these routines
with AO=Oe If the command channel is in use, they will attempt to
use channeL 1. This operation is not recommended, but it does
seem to work!

UT.SCR

UT.UNLNI<

Page 129

See the entry for UT.WINDW for details.

.::.ee the entry for UT.LINK for detai Ls ..

UT.WINDW
*:::**-******-**-*****
"

"
"
"
"
"
"
"
"
"

"
"
"
"
"
"
"
"
"

Vector $C4 UT.WINOW set up a window using a supp li ed
$ea UT.CON set up conso Le window
$Ca UT.SeR set up screen window

Call parameters Return parameters

01
02
03
AD
A1
A2
A3

Error

01 ???
02 ???
03 ???

ptr to name [WINOW only) AD channel
ptr to parameter block A1 ???

A2 ???
A3 ???

retu rns:

BN bad device name [WINOW only)
OM out of memory
NO out of channels
OR window is off-screen

ID

"
name*

"
"
"
"
"
" "
"
"
"
"
"
"
"
"
"
"
"
" ***

The above three routines, which must be called in user mode, set
up console or screen windows using a parameter list which follows
the call statement. In the first case, the window is opened using
a name which has been supplied, a block of parameters defining the
border, and the paper, strip and ink colours. The window is set
up and cleared for use.

The second and third routines define the window using an
additional block of four words.

The parameter block is as follows:

$00
$01
$02
$03
$04
$06
$08
$OA

border colour [byte)
border width [byte)
paper/strip colour [byte)
ink colour [byte)
width [word))
height [word)) not requi red for UT.WINOW
X or1g1n [word))
Y origin [word))

17.0 aDOS SYSTEM STANDARDS

In order to make
currently going
produced.

bast USe of the third-party
on on the QL a number

worklboth software and
f ''-5' l' d' o lnc 31r stan eras

Page 130

hardware
have been

1. Floppy disc standard-This covers the physical layout, formatting,
directory structure and disk handling of floppy disks under Odes.

2c Relocatable object file standard-To allow the linking of sep;rately
compiled modules, potentially written in different languages.

These standards are available on application to Sinclair Research at the
address in the introduction.

Page 131

18.0 ODOS KEYS

The following sect~ons contain keys for various features of Cldos. These keys
provide a definition for several ef the data structures within Odos.

18.1 Error Keys

The following Keys indicate error messages already defined in the system. A
positive error code is taken as an address of a user-suppLied error message.
See the Concepts manuaL for a fuller description ef the way in which these are
used by the procedures bui Lt into SuperBASIC.

ERR.NC
ERR .NJ
ERR.oM
ERR.oR
ERR.BO
ERR.NO
ERR.NF
ERR. EX
ERR .IU
ERR.EF
ERR.OF
ERR.BN
ERR.TE
ERR.FF
ERR.BP
ERR.FE
ERR.XP
ERR.oV
ERR.NI
ERR.RO
ERR.BL

-1 operation not compLete
-2 not a vaLid Job
-3 out of memory
-4 out of range
-5 buffer overfLow
-6 channeL not open
-7 file or device not found
-8 fiLe aLready exists
-9 fiLe or device in use
-10 end of file
-11 d r i ve fu LL
-12 bad device name
-13 transmission error
-14 format fai Led
-15 bad parameter
-16 fi Le error
-17 error in expression
-18 arithmetic overfLow
-19 not impLemented (yet]
-20 read on Ly
-21 bad Line (syntax errOr in BASIC]

18.2 System VariabLes

The foLLowing List gives the offset of each system variabLe from the base of
the system variabLes (whose position can be found using the MT.INF trap],
together with the Length of the variabLe.

$00 word identification word

The foLLowing variabLes are the pointers which define the current state of the
Odos memory map.

SV_CHEAP $04 Long base of common heap area
SV_CHPFR $08 Long first free space in common heap area
SV_FREE $OC Long base of free area __ ! La
SV_BASIC $10 Long base of basi c area ~ 2.BOIO

SV_TRNSP $14 Long base of transient program area
SV_TRNFR $18 Long first free space in transient program area
SV_RESPR $1C Long base of resident procedure area
SV_RAMT $20 Long top of ram (+1)

SV_RANO $2E word random numbs r

SV_POLLM $30
SV _TV MO 0 $'=1 v"
SV _SCRST 533
SV MCST" 534 -
SV _PCINT $35

SV _NETNR $37

word
byte
byta
byte
byte

byte

count of poll interupts missed
G if not TV display
screen status (0 = activej

Page 132

current value of display control register
current value of interrupt con7;fo-L/mask regi st.er

network station number

The following system variabLes are pointers to the list of tasks and drivers.

pointer to list of interrupt 2 drivers
pointer to list of polled tasks
pointer to list of scheduler tasks
pointer to list of device drivers

SV_I2LST
SV]LIST
SV_SHLST
SV_ORLST
SV_GOLST

$38
$3C
$40
$44
$48

long
long
long
long
long pointer to list of directory devics drivers

SV_KEYQ.
SV_TRAPV

$40
$50

long
long

pointer to a keyboard queue
pointer to the trap redirection table

The following system variables are pointers to the resource management tables.
The slave block tables have 8 byte entries, whilst the others have 4 byte
ent r i as.

SV_8TPNT
SV_BTBAS
SV_BTTOP

SV_JBTAG
SV_JBMAX
SV_JBPNT
SV_JBBAS
SV_JBTOP

SV_CHTAG
SV_CHMAX
SV_CHPNT
SV_CHBAS
SV_CHTOP

$54
$5B
$5C

$60
$62
$64
$68
$6C

long
long
long

word
word
long
long
long

$70 word
$72 word
$74 long
$78 long
$7C long

pointer to most recent slave block entry
pointer to base of slave block table
pointer to top of slave block table

current value of Job tag
highest current Job number
pointer to current Job table entry
pointer to base of Job table
pointer to top of Job table

current value of channel tag
highest current channel number
pointer to last channel checked
pointer to base of channel table
pointer to top of channel table

The following variables contain information about how to treat the
and about other aspects of the IPC and serial port communications.
SV-ARDEL, SV_ARFRQ. and SV_CSUB can safely be poked.

SV_CAPS
SV_ARBUF
SVyROEL
SV_ARFRQ.
SV_ARCNT
SV_CQ.CH
SV_SOUNO
SV_SER1 C
SV_SER2C
SV_TMODE
SV_CSUB
SV_TIMO
SV_TIMOV
SV_FSTAT

SV_MDRUN

$88 word
$8A word
$8C wo rd
$8E word
$90 word
$92 worCl
$96 word
$98 long
$9C long
$AO by te
$A2 long
$A6 word
$A8 word
$AA word

$EE byte

caps lock
auto repeat buffer
auto repeat delay
auto repeat 1/freq
auto repeat count
keyboard change queue character code
sound status
recei ve channe l 1 queue address
receive channel 2 queue address
ZX83D2 transmit mode [includes baudrate]
subroutine to jump to on CAPSLOCK
timeout for switching trensmit mode
velue of switching timeout [two characters]
flashing cursor status

which drive is running?

keyboard,
SV_CAPS,

SV _MDCNT .EF
SV _MDDID 5FO
SV MDSTA SF8 -
SV _FSDEF 5100
SV JSLST 5140

byte
B bytes
8 bytes
16*Long
long

microdrive run-up run-down counter
drive IO*4 of each microdrive
status O~ no pending ops
painters to file system physical definition
pointer to list of fiLa channel definitions

Page 133

The following area, between $180 and 5480 is reserved for the supervisor
stack. There is no explicit stack protection in the code, although the stack
should be of sufficient size for most normal purposes.

18.3 SuperBASIC Variables

Note that the system variable SV_BASIC points to the bottom of the SuperBASIC
area, where its job header, which is $68 bytes long, is located. The value of
A6 used during the interpreter points to the address immediately above the job
header, which contains a set of variables formatted as shown in this tabLe.

The first part of the area holds the pointers to the various areas of memory
used by the interpreter: it defines the partitioning of SuperBASIC's own area
of memo ry.

BV_START 0

8V_8FBAS $00
BV_BFP $04
BV_TKBAS S08
8V_TKP $DC
BVYFBAS $1 D
BVYFP $14
BV_NTBAS S18
BV_NTP $1C
BV_NLBAS $20
BV_NLP $24
BV_VVBAS $2B
BV_VVF $2C
BV_CHBAS $30
BV_CHP $34
BV_RTBA6 $3B
BV_RTP $3C
BV_LNBAS $40
BV_LNP $44

BV_CHANGE $4B

BV_BTP $48
BV_BTBAS $4C
BV_TGP $50
BV_TGBAS $54
BV_RIP $58
BV_RIBAS S5C
BV_SSP $60
BV_SSBAS $64

BV_ENDPT $64

BV_LINUM $6B
BV_LENGTH $6A

long
long
long
long
Long
long
long
Long
long
Long
Long
Long
long
long
Long
Long
Long
Long

start of pointers

buffer base
buffer running pointer
token List

program file

name table

name List

variable values

channel table

return table

line number table

change of direction marker

long backtrack stack during parsing
Loog
long temporary graph stack during parsing
Long
long arithmetic stack
long
long system stack [real one!)
long

end of pointers

word
word

current line number
current length

SV_STMNT
aV_CONT
EV_INLIN

BV_SING
BV_INOE.-\(
6V_VVFREE
BV_SSSAV

gap of 6

BV_RAND
BV_COMCH

BV-,'lXLIN
BV_NXSTM
BV_COMLN
BV_STOPN
BV_EDIT
BV_BRK
BV_UNRVL
BV_CNSTM
BV_CNLNO

BV_DALNO
BV_DASTM
BV_DAITM

BV_CNIND
BV_CNINL

BV_LSANY
BV_LSBEF
BV_LSBAS
BV_LSAFT
BV_LENLN
BV_MAXLN

gap of 2

BV_AUTO
BVYRINT
BV_EDLIN
BV_EDINC

BV_TKPOS
BVYTEMP
SV_UNDO

BVJ,RROW

BV_WRLNO
BV_WRSTM
BV_WRINL

S6C
$60
ScE

56F
$70

$76

byte
byte
byte

byte
word
long
long

$80 long
$84 long

$88 word
$8A byte
$8S byte
$8C word
$8E byte
58F byte
$90 byte
$91 byte
$92 word

$94 word
$96 byte
$97 byte

$98 word
$9A byte

$98 byte
$9C word
$9E word
$AO word
$A2 word
$A4 word

$A6 word

$AA

$AB
$AC
$AE

$80
$84
$B8

$B9

$BA

$BC
$BE
$BF

byte
byte
word
word

long
long
byte

byte

word

word
byte
byte

current statement on line
continue ($80J or stop (DJ processing
processing in-line cLause or not

loop (1 J, other (SFFJ, not (DJ

Page 134

single line execution on [$FFl or off (DJ
name table row of last inline Loop index read
first free space in variable value table
saved sp for cut/mem to go back to

random number
command channe l

which line number to start after
which statement to start after
command line saved ($FFJ or not (DJ
which stop number set
program has been edited ($FF) or not (0)
there has been a break (0) or not ($80)
need to unravel (sFF) or not (0)
statement to CONTINUE from
line to CONTINUE from

current DATA line number
current DATA statement number
next DATA item to read

inline loop index to CONTINUE with
inline loop flag for CONTINUE

whether checking list ($FF) or not (0)
invisible top line
bottom line in window
invisible bottom line
length of wi ndow line
max nr of window lines
The 2 words immediately following this will be
overwritten on changing lenln and maxln
nr of window lines so far

whether AUTO/EDIT on ($FF) or off (0)
print from prtok ($FF) or leave in buffer (0)
line number to edit next
increment on edit range

pos of A4 in tklist on entry to PROC
temp pointer for GO_PROC
undo rt stack IMMEDIATELY then redo procedure

down ($FF) 0 r up (01) 0 r no (DO Jar row

fill window when relisting at least to here

when error line number
when error statement
when error inlina ($FFJ or not (DJ

gap of 1

aV_ERROR
BV_ERLIN

BV_WVNUM
BV_wVEAS

SCO

SC2
SCE

~C8

SCA

$100

byte

long
word

word
long

processing when error($8oJ or not [DJ

last error code
line number of last error

number of watched (WHEN) variables
base of WHEN variable table wrt VVBAS

top of BV area

Page 135

Page 136

1B.4 Offsets On BASIC Channel Definitions

The following section gives the format of an entry in the Super8ASIC channel
table. These entries can be monitored or modified by user-defined SuperBASrC
procedures which need to have a channeL attached using a '#n' construct.

CH .ID
CH.CC?Y
CH.CCPX
CH .ANGLE
CH.PEN
CH .CHPOS
CH. WIDTH
CH.SPARE

CH. LENCH

$00
504
SOA
$10
S16
$20
$22
$24

$28

float
float
float
byte
word
word

channe lid
current cursor pDsitior.~ y
cur-ren't cursor position, x
turtle an.gle
pen status (up or down)
character position on line
width of line in characters
.• spa re ..

Length of a channel definition block

18.5 Job Header And Sa~e Area Definitions

The location of the job table Can be found by looking at the system variables
SV_JBBAS and SV_JBTOP. Each entry in the table is a longword pointing to a
block of $68 bytes in the format given here.

JB_LEN* $00 long
JB_START $04 long
JB_OWNER $08 long
JB_HOLO $OC long
J8_TAG* $10 word
JB]RIOR $12 byte

on each

executing
JB_PRINC $13 byte

JB_STAT* $14 word

JB_RELA6 $16 byte
relative to A6
JB_WFLAG $17 byte
one
JB_WJOB $18 long
JB_TRAPV $1C lO"jl
JB_DO $20
JB_D1 $24
JB_D2 $28
JB_03 $2C
JB_04 $30
JB_05 $34
JB_D6 $38
JB_07 $3C
JB_AO $40
JB_A1 $44

tota l length of j ob a rea
start address on activation (usually 0)
job ID of the owner of this job
ptr to byte to be cleared when job released
tag for this job, allocated by MT.CJOB
current accumulated priority:
set to zero when the job is executing, incremented

scheduler call if the job is active but not

priority increment (the actual priority of the job)
set to zero if the job is inactive
SuperBASIC activates jobs at priority $20
j ob status

o => not suspended
>0 => number of frame times to release
-1 => suspended
-2 => waiting for another job to finish

MSB set if next trap #2 Or #3 has addressing

set if there is a Job waiting on completion of this

Job ID of waiting Job
pointer to trap redirection vectors
save offset of DO
save offset of 01
save offset of 02
save offset of 03
save offset of 04
save offset of 05
save offset of 06
save offset of 07
save offset of AD
save offset of A1

Page 137

JB _A2 $48 save offset of A2
JB y,3 $4C save offset of A3
JB y.4 550 save offset of A4
JB ." _I""!.'-' $54 save offset of .-AD

JB y,6 $58 save offset of A6
J8 _A7 $5C save offset of A7
JB _USP $5C save offset of USP
JB _SR $60 saVE offset of S8 .-,,0 _PC $62 save offset of PC
JB _21'10 $68

Thus the job identified by <Jab-ID> starts at {[SV_JBBAS)+4*<Job_ID>.Wj ~ and
the most significant ward of (Job-ID) must match the tag held at 10H on from
this address (otherwise that job no longer exists]. A negative <Job-ID>
implies that the job no longer exists, as does a value of <Job-ID>.W which is
greater than the length of the job table held in SV_JBMAX.

Entries marked by * should not be modified. Other entries may be modified by
a trap, or may be changed directly with caution.

Page 138

18.6 Memory Block Table Definitions

The following keys define the format of the start of E sLave block.

BT_ STAT SOD byte drive ID / status byte - see below
BT_PRIOR $01 byte block priority
BT--,SECTR $02 word sector number [m; credr; ve*2J
BT_FILNR $04 word file number (microdrive) Log; Ca l
BT_ BLOCK S06 word block number (microdrivel loceti on
BT_ END $08

The most significant 4 bits of the status byte contain the
physical device block SV_FSDEF, the least significant are the

pointer to the
status cedes:

BT.UNAV
BT. EMPTY
BT.RREQ.
BT. TRUE
BT.AVER
BT.UPDT

OOOOOOOOB
000000018
00001001 B
000000118
00001011B
00000111B

Status code masks:

BT.ACTN
BT .INUSE

00001100B
000011108

Bits of status codes:

BT .• FILE 0
BT •. ACCS 1
8T •• WREQ 2
BT .. RDVR 3

block is unavailable to file system
block is empty
block required to be read from microdrive
block is a true representation of file
block is awaiting verify
block is updated

check for read or write request
check if a file block in use

1 if a file block
1 if contents may be accessed
1 if block requi red to be written
1 if block required to be read / verified

Page 139

18.7 Channel Definitions

The position of a channel definition block corresponding to a given channel ID
ca~ be found using a similar method to that used for finding the block for a
job described in section 3.1. The relevant system variables are SV_CHBAS and
SV_CHM.AX.

Channel cefinition header for all channels:

r" LEN SOD long length of definition block vi'1 -
CH - DRIVR $04 long address of driver
CH _OWNER $08 long owner job
CH - RFLAG SOC Long address to be set when space released
CH _TAG $10 word channel tag
CH _STAT $12 byte status - 0 OK, negati ve waiting

-1 A1 abs, $80 A1 rel AS
CH _ACTN $13 byte stored action for waiting job
CH _J08WT $14 long T-_u of job wai ti ng on ID
CH END $18 -

Extended channel definition for plain serial queues:

$18
$1C

long
long

Device driver header:

CH_NEXT
CH_INoUT
CH_OPEN
CH_CLOSE

$00
$04
$08
$OC

long
long
long
long

pointer to input queue (or zero)
pointer to output queue (or zero)

pointer to next driver
entry for input and output
entry for open
entry for close

The following are for directory devices (file system) only:

CH_SLAVE $10 long entry for slaving blocks
CH_RENAM $14 long entry reserved for rename

CHJoRMT $1C long entry for format medium
CH_DFLEN $20 long length of physical definition block
CH_DRNAM $24 2+n bytes dri ve name

18.8 File System Definition 8locks

File system channel definition block format:

FS_NEXT $18 long link to next file system channel
FS_ACCES $1C byte accesS mode
FS_DRIVE $10 byte drive ID
FS_FILNR $1 E word file number
FS_N8LoK $20 word block containing next byte
FS_N8YTE $22 word next byte in block
FS_E8LDK $24 word end of file (block)
FS_E8YTE $26 word end of file (byte in block)
FS_C8LoK $28 long pointer to table for current slave block
FS_UPDT $2C byte set if file is updated

FS _FNAME $32
FS SPARE $58 -
FS - END SAO

The common pe rt

FS .NMLEN $24
FS .HDLEN $40

FS _DRIVR $10
FE DRIVN $14 -

FS _ MNAME $16
FS _ FILES $22

name 2+36 file name
72 bytes

of a physical definition block

Long
byte

word+10
byte

max length of file name
length of file system header

pointer to driver
dri ve number

bytes medium name
number of files open

Page 140

18.9 Screen Driver Data BLock Definition

This is the format of the block ha~ded to a screen driver operation.

SD_XMIN
SD_Yf-lIN
SD_XSIZE
SD_YSIZE
SD_SDRWD
SD_XPOS
SD_YPOS
SD_XINC
SD_YINC

SDYONT

SDYMASK
SD_SMASK
SD_IMASK

SD_CATTR

SD_CURF
SD_PCOlR
SD_SCDlR
SD_ICOlR
SD_SCDlR

SD_NlSTA

SD_FMOD
SD_YDRG
SD_XORG
SD_SCAl
SD_F8UF
SO_FUSE
SD_LINEl

$18 word
S1A word
SiC werd
$1 E word
$20 word
$22 word
$24 word
$26 word
$28 word

$2A 2*long

$32 long

$36 long
$3A long
$3E long

$42 byte

$43 by te
$44 byte
$45 byte
$46 byte
$47 byte

$48 byte

$49 byte
$4A float
$5D float
$56 float
$5C long
$60 long
$64 word

SO_END $68

wi ndow tcp LHS

window size

bOi'der wicth
cursor position

cursor i ncrem6nt

font addresses

base address of screen

paper colour mask
strip colour mask
ink ca lour mask

character attributes

cursor flag D=supprsssad, >O=visible
paper colour byte
strip colour byte
ink colour byte
border colour byte

new line status [>0 implicit, <0 explicit]

fill mode [O=off, 1=on]
graphics window y-origin
graphics window x-origin
graphics scale factor
pointer to fill buffer
pointer to user defined fill vectors
line length in bytes

18.10 Queue Header Definitions

Page 141

The following is the format of the header of a queue manipulated using the
system's built-in queue handling routines.

Q_EOFF $00 bit end of file flag [MSbit]
Q_NEXTQ $00 long link to next queue
Q_ENO $04 long pointer to end of queue
Q_NEXTIN $08 long pointer to next location to put byte in
Q_NXTOUT $OC long pointer to next location to take byte from
Q_QUEUE $10 start of queue

Page 142

18.11 Arithmetic Interpreter Operation Codes

The following are the codes for the operations which csn be performed on the
Q,L th rough the

RI.TERM $00
RI.NINT S02
RI. INT $04
RI .. NLINT SOS
RI.FLOAT $08
RI.ADO .CA
RI. SUB SOC
RLMULT SOE
RI.OIV $10
RI.ASS $12
RI.NEG $14
RLOUP $16
RI.COS $18
RI.SIN $1A
RI.TAN $1C
.ALCOT $1E
RI.ASIN $20
RI.ACOS $22
RI.ATAN $24
RI.ACOT $26
RLSURT $28
RI. LN $2A
RI. LOG1 0 $2C
RI. EXP $2E
RLPOWFP $30
RLMAXOP $30
RI.LOAO $00
RI.STORE $01

vectored routines which access the arithmetic interpreter.

termi nator byte
nearest integer to top of stack (tos]
truncate tos to integer
nearest long integer to tas
integer tOE to floating point
add tos to next on stack (nos)
subtract tos from nos
multiply tos by nos
divide tos into nos
positive value of tos
negate tos
duplicate tos
cosine
sine
tangent
cotangent
arcsine
arccosine
arctangent
arccotangent
square root
natural log
logarithm to base 10
exponential
nos to power of tos
highest valid opcode
load operation bit
store operation bit

18.12 IPC Li nk Commands

These can be used with the MT.IPCOM trap.

RSET_CMO 0
STAT_CMO 1
OPS1_CMO 2
OPS2_CMO 3
CLS1_CMO 4
CLS2_CMO 5
ROS1_CMO 6
ROS2_CMO 7
ROK8_CMO 8
KSOR_CMO 9
INSO_CMO 10
KISO_CMO 11
MORS_CMO 12
SAUO_CMO 13
RANO_CMO 14
TEST_CMO 15

system reset
report input status
open RS232 channel 1
open RS232 channel 2
close RS232 channel 1
close RS232 channel 2
read RS232 channel 1
reap RS232 channel 2
read keyboard
keyboaFd direct read
initiate sound process
kill sound process
microdrive reduced sensitivity
change baud rate
random number generator
test

Page 143

18.13 Hardware Keys

The following are the addresses of the registers within the QL hardwere.

PC _CLOCK
PC _TCTRL
PC YCTRL
PC _IPCRD
PC_ IPCWR
PC_ INTR
PC _TDATA
PC _TRAK1
PC_TRAK2
MC _STAT

$18000
$18002
$18020
$18020
$18003
$18021
518022
$18022
$18023
$18063

real time clock in seconds (long word)
transmit control
microdrive control/statuE and IPC status
IPC read is the same
IPC write
interrupt control/status
transmit data
microdrive read track 1
microdrive read track 2
display control

The following is the format of the interrupt register.

PC.INTRG
PC.INTRI
PC.INTRT
PC.INTRF
PC.INTRE
PC.MASKG
PC.MASKI
PC.1"'ASKT

$01
$02
$04
$08
$10
$20
$40
$80

gap interrupt
interface interrupt
transmit interrupt
frame interrupt
external interrupt
gap mask
interface mask
transmit mask

The following is the format of the transmit control register.

PC .. SERN 3 serial port number
PC .• SERB 4 O=se ri a l ID
PC .• DIRO 7 di rect output

PC.BMASK 00000111 B baud rate mask
PC.NOTMO 11100111 B all bits except mode control
PC.MOVMO 00010000B microdrive mode
PC.NETMD 00011000B network mode

The following is the format of the microdrive control/status register.

PC .. SEL 0
PC .. SCLK 1
PC .. WRIT 2
PC •• ERAS 3

PC .. TXFL 1
PC .. RXRO 2
PC .• GAP 3
PC .• OTR1 4
PC .. CTS2 5

Wri te masks:

PC.READ 0010B
PC.SELEC 0011 B
PC.DESEL 0010B
PC. ERASE 1010B
PC.WRITE 1110B

microdrive select bit
microdri ve select clock bit
microdrive wri te
microdrive erase

mi crodri ve Xmit buffer full
microdrive read buffer ready
gap
DTR on port 1
CTS on port 2

read [or idle] microdrive
select bit set
select bit not set
erase on / write off
erase and write

The following is the format of the display control register.

MC •• BLNK 1 bit
MC .. M256 3 bit
MC •• SCRN 7 bit

1
3
7

blanks di splay
sets 255 mode
sets screen base

Page 144

Page 145

18.14 Trap Keys

This section gives a summary of all of the ades traps, together with thei r
access keys passed in DO. All keys are in hex.

18.14.1 Trap 1 Keys (manager Traps) -

HT.INF
HT .CJOB
MT.JINF
l<iT .RJOB
MT .FRJoB
MT .FREE
MT.TRAPV
MT .SUSJB
MT .RELJB
MT.ACTIV
MT .PRIDR
HT.ALLoC
MT .LNKFR
HT.ALRES
f-rr .RERES
HT.OMooE
HT .IPCOM
MT.BAUO
HT.RCLCK
MT.SCLCK
MT.ACLCK
MT .ALBAS
MT .REBAS
MT .ALCHP
MT .RECHP
MT. LXINT
MT .RXINT
MT. LPOLL
MT.RPOLL
MT. LSCHO
MT.RSCHo
MT .LIoo
MT .RIDo
MT. LOO
MT.ROO

SOD
$01
$02
$04
S05
S06
S07
$08
$09
SOA
SOB
$OC
$00
$OE
$OF
S10
S11
$12
$13
$14
S15
S16
$17
$18
$19
$1A
$1 B
S1C
$10
$1 E
$1F
$20
$21
$22
$23

18.14.2 Trap 2

ID .OPEN $01
ID .CLOSE $02
ID . FORHT $03
ID.OELET $04

ID .OPEN 03 keys:

ID.OLD 0
ID.SHARE 1
ID . NEW 2

get system information
create a job
get information on job
remove a job
force remove a job
find out how much free space there is
set pointer to trap redirection vectors
suspend a job
re lease a job
acti vate a job
set a job priority
allocate a bit of a heap
release a bit of a heap
allocate resident procedure area
release resident procedure area
set display mode
send IPC command
set baud rate
read clock
set clock
adj ust clock
allocate Basic area
release Basic area
allocate space in common heap
release space in common heap
link in external interrupt handler
remove external interrupt handler
link in polled task
remove polled task
link in scheduler task
remove scheduler task
link in IO driver
remove ID driver
link in directory driver
remove directory driver

Key~ [I/O Management Traps)

open ch~!nne l
close channel
format medi um
delete file

open old (exclusive) file
open old (shared) file
open new (exclusive) file

-

or device

ID .OVERW 3
IO.DIR 4

overwrite (or open new] file
open directory

Page 146

18 .. 14.3

IO.PENO
IO.FBYTE
IO .FLINE
IO.FSTRG
IO.EDLIN
IO.SEYTE
ID .SSTRG
SD.EXTOP
SO .PXENQ.
SO .CHENQ.
SD.EOROR
SD.WDEF
SO .CURE
SD.CURS
SD.POS
SD.TAB
SD.NL
SD.PCOL
SD.NCDL
SD.PROW
SD.NROW
SD.PIXP
SD.SCROL
SD.SCRTP
SO.SCRBT
SO.PAN
SD.PANLN
SD.PANRT
SO . CLEAR
SD.CLRTP
SD.CLRBT
SD.CLRLN
SD.CLRRT
SO .FOUNT
SO .RECOL
SO.SETPA
SD.SETST
SD.SETIN
SO.SETFL
SD.SETUL
SD.SETMD
SD.SETSl
SO .FILL
SD.DONL
SD.POINT
SO. LINE
SO.ARC
SD.ELIPS
SD.SCALE
SD.FLOOD
SO.GCUR
SO.ROP
SO.DOT
SO .LIN
FS .CHECK
FS.FLUSH
FS.POSA8

Trap 3 Keys [I/O Traps] -

$00
$01
$02
S03
$04
S05
S07
$09
$OA
SOS
sac
$00
$OE
$OF
$10
$11
$12
$13
$14
$15
$16
$17
$18
$19
$1A
$18
$1 E
$1F
$20
$21
$22
$23
$24
$25
$26
$27
$28
$29
$2A
$2B
$2C
$20
$2E
$2F
$30
$31
$32
$33
$34
$35
$36
$37
$38
$39
$40
$41
$42

ChECk for pending input
retch a byte
fetch a line of bytes
fetch a string of bytes
edi tal i ne
send a byte
send a string of bytes
external operation (A3)
pixet based size / position enquiry
character based size / position enquiry
define window border
define window
enable cursor
supp ress cu rsor
absolute position
tab (horizontal position]
new li ne
previous column
next coLumn
previous row
next row
set pixel position
scroll whole window
scroll top of window
scroll bottom of window
pan window
pan cursor line
pan RHS of cursor line
clear whole window
clear top of window
clear bottom of window
clear cursor line
clear to right of curSor
set fount addresses
recolour a window
set paper colour
set strip colour
set ink colour
set flash on/off
set underline on/off
set write mode
set character size
fill block
do pending newline
se~ point in window
draw line
draw arc
draw ellipse
set graphics scale
set fill mode/vectors
set text cursor using graphics coords
rasterop
points in pixel coords
lines in pixel coords
check all pending operations
flush buffers
position file pointer (absolute]

Page 147

FS.POSRE
PS .f.lDINP
FE . HEADS
FS_.HE4DR
PS. LOAD
FS .SAVE

$43
545
$46
$47
$48
$49

position file pointer (relative)
information about medium
set file header
rea_d fi le header
load fi le
save file

Page 148

Page 149

18.15 list Of Vectored Routines

The following is a list of the vectored routines, together with the addresses
of their associataD vectors. All keys ars in hex

BP. INIT 5110 add mic procs/fns to BASIC
BP.lET $120 assign TQS to variable
BV.CHRIX $11A reserve space on RI stack

CA .GTINT $112 get word parameters to RI stack
CA .GTFP $114 g-+ c. floating point numbers
CA.GTSTR !!:!""I~

... I IV get strings
CA .GTLIN $11 B get long integers

CN.BTOIB $104 ASCII bi ne ry to byte
CN.BTOIl $10B ASCII bi na ry to long
CN.BTOIW $106 ASCII bi na ry to word
CN.DATE $EC get ASCII date and ti me
CN .DAY $EE get ASCI! day of week
CN.DTOF $100 ASCII to fLoati ng point
CN.DTOI $102 ASCII to integer
CN.FTOD $FO floating point to ASCII
CN.HTOIB $10A ASCII hex to byte
CN.HTOIl $1DE ASCII hex to long
CN.HTOIW $10C ASCII hex to word
CN .IT08B $F4 byte to ASCII bi na ry
CN .ITOBl $F8 long to ASCII bi na ry
CN .IT08W $F6 word to ASCII bi na ry
CN.ITOO SF2 word integer to ASCII
CN .ITDH8 SFA byte to ASCII hex
CN .ITDHl SFE long to ASCII hex
CN .ITOHW SFC word to ASCII hex

ID • NAME S122 decodes a device name
ID .QSET SOC set up a queue
ID .QTEST SOE test status of queue
ID.QIN SED put byte into queue
ID .QOUT $E2 extract byte from queue
ID .QEOF SE4 put EOF marker into queue
ID .SERQ $E8 direct queue handling
ID.SERID $EA general ID handling

The MD routines are indexed by $4000.

MD .REAO
MO.WRITE
MD. VERIN
MD .SECTR

MM.AlCHP
MM.AllOC
MM.lNKFR
MM.RECHP

RI.EXEC
RLEXECB

UT.CON
UT.CSTR

$124
$126
$12B
$12A

SCD
$08
$OA
$C2

$11C
$11 E

$C6
$E6

read a sector
write a sector
veri fy a sector
read a sector header

allocate common heap space
allocate an area in a heap
link free space back into heap
releases common heap space

executes an operation
executes a list of operations

set up console window
compares two strings

UT.ERR SCC
UT.ERRO SCA
UT .LINK $02
UT.MINT SCE
UT.MTEXT $00
UT.SCR s~~ ,",0

UT.UNLNK $04
UT. WIND\,! $C4

write error message to channel
write error message to channel zero
Link an item into a List
convert integer to ASCII, put on chan
send message to channel
set up screen window
unlink an item from a list
set up window using supplied name

Page 150

Page 151

19.0 DOING BUSINESS WITH SINCLAIR

The purposE of this section is to encourage those thinking of developing
commercial software for the QL to consider offering it to Sinclair Research
for publishing, promotion and distribution. There are various options offered
to software houses, with varying degrees ef Sinclair involvement and support.

The first option is that of fuLL publication and manufacture by Sinclair~

whereby the new product is taken as a master with draft documentation,
packaged in Sinclair packaging style and soLd under the Sinclair logo in all
the outlets stocking Sinclair hardware products. The software house is
thereby released completely from the tasks of production, packaging,
promotion, distribution and sale. For such a proposal to be financially
viable, Sinclair has to obtain an exclusive licence for the product on
Sinclair computers, and Sinclair will pay a percentage royalty on every unit
sold. The software house remains free, of course, to develop the software for
other computers, should it wish to do so.

The second option is for the software house to give Sinclair an exclusive
licence to distribute the product in SincLair packaging, but to sell the
product to SincLair as a fuLLy packaged finished product to SincLair
specification. In this way the software house remains responsible for
production and packaging, with SincLair undertaking promotion, distribution
and sa le.

The third option is for the software house to retain responsibi Lity for
production, packaging, promotion, distribution and sale of the product, but
allowing Sinclair to offer the product for saLe in addition. This method
provides the software house with an opportunity to increase its sales, as the
product wilL be promoted in all Sinclair MaiL Order literature. As orders are
received, they will be passed to the software house, and Sinclair wilL require
a percentage commission on orders generated in this way. Under this option,
Sinclair packaging is not used for the product and so it remains very much the
software house's 'own brand'.

Further details of the above options are given later on in this section, but
first, the procedure for offering software to Sinclair is deaLt with, together
with Sinclair methods of review and appraisal.

19.1 How To Offer A Product To SincLair

When a software house offers a product to SincLair for pubLication, two main
areas have to be examined.

The first of these areas is the product concept. Under this heading, answers
must be provided to such questions as:

What is the product?
What does it do?
For what type of market is it intended?
Does it exi st?

If it exists:

How is it seLLing?
Methods of Sale?
Volumes to date?

Page 152

What machine does it run on?

If it aoes not exist:

What kind of sales are anticipated?
Based on what kind of information?
Are there any other products Like it and if Se which?

Obviously, some of the questions listed above assume that the product does not
already exist for the QL or any other SincLa; r computer. However, if it does
run on some other computers, the second area to be examined would be concerned
with- how the product might be adapted to make use of the QL's features.

Spec; fi ca lly:

How would the product change?
What kind of pricing structure is envisaged?
What volume of sales are expected with respect to a low-cost computer

such as theQ.l?
Would the target market change at all and if so, how?

Apart from considering the two areas described above, the product would need
to be reviewed by Sinclair. For such a review to take place, the software
house would need to send either:

1 . The product itself, running on the Q.l, together with
documentation. It need not be finished and completely bug
long as it is sufficiently complete to be able to be put
review.

or

draft
free, so
out for

2. The product running on another machine, preferably on Apple II,
Macintosh or an IBM PC.

or

3. A detailed product proposal on paper if the product exists only as a

design. Such a proposal should cover at the very least the product
concept and the proposals for the Q.l version of it.

19.2 Where Software Products Should Be Sent For Review

1 • Business
Software
manua l .

-software
Editor,

Or
at

proposals shOUld be sent to the Business
the address given in the Introduction to this

2. Educational software or proposals should be sent to the Educational
Software Editor, at the same address.

3. Anything that does not fall clearly into either of these two
catagories, (e.g., games, compilers, utilities, expert systems etc.l.
should be sent to the Software Manager, at the same address.

Page 153

19.3 How ProductS Are Reviewed And What SincLair Are Looking For

1. Games and antartai nment software

Software of this type is generally reviewed by outside reviewers,
often sixth formers. They ere looking for originality, graphics,
excitement, variety and pace. The software is judged under these
five categories. The reviewers also compare the software to other
similar products~ and finally try to identify any bugs which may
requi re fixing together with any improvements which may be made~

As the computer games market is both extremely competitive and
overcrowded, Sinclair can only consider absolutely top quality
products for distribution. At the same time, the OL has expanded the
range of possibi l i ti es in the context of entertai nment software, thus
any new ideas for using computers at home for entertainment and
leisure activities would be reviewed with great interest.

2. Compilers and Utilities

Technical products of this kind wiLL be reviewed internally in the
first instance by Sinclair software engineers. They will judge the
product for its completeness; the adequacy of its documentation, the
speed at which it runs on the OL and its technical competence. In
some Cases where the product is of a very specialist nature it would
be put out for review by an independent consultant.

3. Educational Software

Educational products, either for school, polytechnic, university or
home use, will be reviewed internally at first, and possibly also by
Sinclair educational consultants. The following categories are of
particular interest to Sinclair:

1. Software which caters for specific university and polytechnic
markets.

2. Software which provides adult home education in fields previously
uncatered for.

3. Software which actually teaches rather than tests
languages such as French, German or Spanish.

foreign

4. Software which teaches people how to expand their potential for
different employment markets, for example, teaching touch typing,
word processing, how to understand accounts, how to program etc.

5. Expert systems and authoring systems, especially if they have
application" software running under them which can also be sold.

4. Business Software

Business software will be reviewed internally unless it caters for a
specific vertical market in which case Sinclair may seek permission
to have the product revi ewed in detai l by an independent consu l tant.
When possible business packages are being considered, both the
company and the product will be examined very carefully. Thus the

Page 154

following are particularly sought after:

1. Established suppliers of business products with a respected name
in the business market.

2. Products which would benefit from distribution in wider markets
and at a lower pri ca than at present.

3. Suppliers who can,
needed by their
additional cost.

if necessary~ provide any direct support
product to Sinclair customers, possibly at

4. A Secure financial backing which wi II
will not disappear after Sinclair
leaving no support for it.

ensure that
have Launched

19.4 Contractual Options In Dealing With Sinclair Research

the company
the product,

In the introduction to this section several possible contractuel options were
described, which will now be explored in more detail.

1. Distribution in Sinclair packaging

Royalty contract - every software house which offers a product to
Sinclair Research for distribution in Sinclair packaging under the
Sinclair name, will be asked to sign a Licence Agreement of the type
shown in Appendix A. This agreement allows far the grant of an
exclusive licence to Sinclair Research far the distribution and sale
of the specified software products, in return far a royalty which is
normally 20% of the selling price.

2. Distribution of finished goads

Those software houses from wham Sinclair agree to buy a complete
finished product packaged to Sinclair specifications, will be asked
to sign a second contract in addition to the Software Licence
Contract described above. This second contract would provide far the
supply and purchase of manufactured goads an an 'at cast plus' basis.
In this way, a packaging specification would be agreed upon for the
product, and Sinclair would nominate approved suppliers of each
component of that packaging. The software house would then purchase
these components from the nominated supplier at a price previously
negotiated between Sinclair and the supplier. The cost of the
product would then be passed on to Sinclair, the software house
having added a fixed margin as their handling fee for controlling
producti on.

3. Sinclair approved products

Under this option, the product would neither be sold in Sinclair
packaging nor would it carry the Sinclair name. It would instead be
packaged in the software house's own packaging under its own name.
It would, however, be promoted as a Sinclair endorsed product in the
Sinclair catalogue. Orders would be sent to a special PO Box at
Sinclair's despatching warehouse and would then be forwarded direct

to the software house for fulfilment. Sinclair would, of
expect to be paid a percentage commission on orders generated
way, which wouLd normElLy be equivalEnt to 15% of the retail
price.

19~5 Promotion And Distribution

1. SincLair pack~ged scftware

Page 155

course 1

in th is
sel Ling

As might be expected, software carrying the Sinclair logo attracts
the bulk of Sinclair promotional activities. In particular, all
software carrying the Sinclair logo and name will:

11 be offered initially to all Qlub members directly, possibly at a
small discount as an intrcductory offer;

21 be carried in a catalogue which will be included with every QL
shipped;

31 be launched to the trade and specialist press, and included in
advertising campaigns from time to time;

41 be the subject of special promotions which will be considered for
vertical market software;

51 offered the possibility of consideration for bundling contracts
from time to time. This can be a very lucrative way of ensuring
that the software reaches the widest possible market;

61 be offered to our local area offices and distributors all over
the world, for translation into foreign languages;

71 be similarly offered to our Boston Office for pUblication and
distribution in the United States.

2. Sinclair endorsed products

Where a product is not distributed in the Sinclair packaging, but is
being promoted and offered for sale through Sinclair, then it is
likely to be promoted using methods il and iil only, though from time
to time, where appropriate, other methods of promotion and marketing
will be considered. To attract the full range of Sinclair's
marketing '@ctivities a product needs to be offered for distribution
in both the Sinclair packaging and brand name.

Page 156

1 S.6 Summa ry

Many sofware houses writing software for personal computers today are
concerned abou_t the pOBsib le di luti on of effort that is entai led when e
product hes to be packaged, promoted, marketed and sold as well as developed.
Sinclair Research are known for their ability to obtain media coverage and for
their marketing and distribution capabilities.

In the caSe of the QL, Sinclair believe that software houses can be offered
distribution opportunities without equal. The Qlub will enable direct contact
to be retained with customers on a far larger scale than previously possible
with other SincLair computers. It is proposed to USe the Qlub NeWSletters as
a method of informing customers of every new product launched in advance of
the general public. Small discounts will be offered which will make the
product attractive to the customer, but will not begin to approach the kind of
discounts Sinclair would need to give should the product be offered through a
distributor or a retailer.

It is hoped that software houses will feel that to offer software to Sinclair
in one of the ways described above will prevent many of the problems
previously associated with bringing their products onto the market place.

Page 157

20.0 BIBLIOGRAPHY

1. MC68000 16/32-bit microprocEssor programmer's reference manuaL.

Published by Prer-tiee-Hall for Motorola. ISBN D-13-566795-X.

Contains instruction set details for the MCS800D and MeSSOG8,
including permissible addressing modes and bus cycle diagrams. Some
hardware detail is included, but no timing diagrams.

2. Motorola Semiconductors 18-bit microprocessors data manual

Published by Motorola Ltd., York House, Empi re Way,
Middlesex.

Contains the hardware reference for the MC6BDDB.

1883.

Wembley,

QL SOFTWARE DEVELOPER'S GUIDE - INDEX

A1 stack see arithmetic stack
access layer

of device driver 19,20 1 21,22
of di rectory dri VE 23-27

add-on
card ROM
ca rds
hardware
peri phara ls
RAM
ROM

al locati on
heap
memory

alphabets, speci a l
area flood
a ri thmeti c

interpreter operation
codes

stack
array storage
atomic actions
auto-repeat

baud
blocks

physical

800T
slave

device driver
fi le

border
BP .INIT
BP • LET
buffer
bus error
business
BV.CHRIX

CA.GTFP
CA.GTINT
CA .GTUN
CA.GTSTR
CAPSLOCK
change queue charact~r
channe l

close
conso le
definition block
ID
number
open
tab le
superBASIC

character conversion

38
38,39
35

35,38
7,35,38,39

6,14,86
6,7,14,19
41
69,104

101
29,33,79
31
9
18

36,45,103

23
6,26,98

10
10
17,65
32,39,78,105
33,78,105
29
9
106-109
14,33,79,105

33,79,105
33,79,105
33,79,105
33,79,105
18
18
15
15,18,21,24,25
16,18
19,23,99
12,15
33
15,18,21,24-25
29,33-34
6,97
80,81

Page 158

character set
change que.ue
fra-ezB screen
Laca l
spac; ng

character si ze
cLock

rea l-ti me
eN.BTOIS
CN. BTOIL
CN. BTOIW
CN.DATE
eN.DAY
CN.DTOF
eN.DTOI
CN.FTOD
CN.HTDIB
CN.HTOIL
CN.HTOIW
CN .HOBB
CN.ITOBL
CN.ITOBW
CN.ITOO
CN .ITOHB
CN.ITOHL
CN .ITOHW
code

initiaLisation
position-independent
restrictions

coLour
border
ink
paper
strip

command interpreter
common heap

allocation
reLease

consoLe
I/O

consoLe channeLs
speciaL properties

contracts
coordinate system

graphics
pixeL

CPU interface
CTS
cursor

date

flashing
increment
position

definition bLock
channeL
device driver
directory device

40
18
18
40
16
73,75,104
36
35:36
80,105
80,105
80,105
36 1 80,105
36,80,105
80,105
80,105
81 ,105
80,105
80,105
80,105
81,105
81,105
81,105
81 ,105
81,105
81 ,105
81,105

19,20
12
32
17,74
17
17
17
17
11
5,6
6,14,86
87
16
16-18,28
16
18
108

16
16
38-39
36
73
18
17
17

80

19,23,99
19-20

Page 159

linkage
fi le system
physical

device
decoding
name

device driver[s)
access layer
BOOT
bui It-in
console
definition bLock
di rector
initialisation
memory allocation
microdrive
network
non-di rectory
physical layer
pipe
screen
serial I/O
serial network link
user defined
user supplied

directory device driver(sJ
access layer
initialisation
linkage block
microdrive

display
contra l
modes
RAM

display control register
distribution
draw
DTR

error
bus
keys
messages

exception processing
EXEC
EXEC_W
expansion
extensions, opeoratlrg system
external interrupt

file
BOOT
heade r
format
I/O
pointer
program
shared

file delete

23
99
23
15
19,82
15
14,15,19-22
19,20,21-22
10
28
28
19-20
23-27,37
19-20
19
28
37
23,24
13,19,20
28
28
28
28
13
19
23-27
24
23
23
37

35-36
16,46
5,35
36
108-109
72
36

9
93
89,93
9-10
12
12
38
11 ,13
9,20

10
16
16
16
16
29
24
24-25

Page 160

file system definition blocks
flag

characteristics
flashing
floating point storage
format routine
fount
frame i ntarrupt
free memory
freeze screen character
FS 2CHECK
FS.FLUSH
FS .HEADR
FS.HEADS
FS. LOAD
FS.MOINF
FS.POSA8
FS.POSRE
FS.SAVE
functions

linking
super8ASIC

graphics
coordinate system
ope rati ons

hardware
add-on

heap
allocation
common
expanding
linking free space into

mechanism
management
setting up

user

initialisation
code
device driver
directory device driver
ados
system management

tables
system variables

Input/Output (I/O)
console -
file
queue
screen
serial

Input/Output Sub-System
Integer storage
Intelligent Peripheral

controller
8049 (IPC)

link commands

99
17
39
18,35 1 36
30,31
24 1 26-27
70
9
5 t 5!14
18
16,58,104
16,58,104
59,104
59,104
60,104
60,104
61 ,104
61,104
62,104
32
32
13

17,72
'16
18

35,102
35
14
6,14,86
5,6,86,87
14
87
6,14
44
14
14

19,20
19-20
23
5-10,93-105

10
10
15-18,21,22,24,25
16-18,28
16
18
16-18,28
15,19,28,36,84
6,15,24
30,31

36,48
101

Page 161

i nterfaci ng
interrupt

8uto-vectored
exte rna L
frame
leve l 7
non-maskab l.e
polling
traps for

interrupt servers
I/O see Input/Output
ID.CLOSE
IO.OELET
ID .EOLIN
IQ .FBYTE
IQ .FLINE
ID .FORMT
ID .FSTRG
I/O management traps

close channel
delete file
format medium
keys
open channe l

ID .NAME
10 .OPEN
ID .PEND
ID .QEOF
ID.Q.IN
ID .QOUT
ID.QSET
ID.UTEST
ID .SBYTE
ID. BERIO
ID .SERU
lOSS see Input/Output

Sub-system
IO.SSTRG
I/O traps

absolute position
character based

size/position
enquiry

check all pending
operations

check for pending input
clear part or whole

window
define window
define window border
edit aline
enable cursor
external operation
fetch a byte
fetch a line of bytes
fetch a string of

bytes
fill block
flush buffers

2&-34
13,19
9
9 , 20
9
10
10
20
9-10
9

55,103
24~55,103
18,62,104
63,104
18,83~104
56,103
63,104
7,55-57
55,103
55,103
56,103
103
57,103
21,82,105
21,24,57,103
64,104
83,105
83,105
83,105
83,105
83,105
71,64,104
22,84,105
22,84,105

65,104
7,13,58-77
73,104

73,104

58,104
64,104

66,104
77,104
65,104
62,104
67,104
68,104
63,104
63,104

63,104
68,104
58,104

Page 162

information about
medi um

kayE
tead fi Le
new Li ne
next coLumn
next raw
pans par~ or whole

window
pixel based size/

60,104
104
60,104
73,104
73,104
73,104

71,104

position enquirer 73,104
pLots and draws

various lines and
arcs

position file pointer
(absolute)

position file pointer
[re lati vel

previous column
previous raw
read file header
recolour a window
save file
scroll part or whole

window
send a byte
send a string of bytes
set character size

and spacing
set character size
set fi le header
set fill mode vectors
set flash and under-

72,104

61,104

61,104
73,104
73,104
59,104
74,104
62,104

74,104
64,104
65,104

76,104
75,104
59,104
69,104

score 75,104
set found addresses 70,104
set pixel position 71,104
set screen colours 76,104
set write mode 75,104
suppress cursor 67,104
tab (horizontal

position) 73,104
IPe see Intelligent Peripheral

contro ller

job (s)
active
format
header
ID
inactive
start-up
suspended
table
tree

key boa rd

7,11-13
11-12
12
29,97
9,12
11
11-12
11
12
47,49

auto-repeat 8
control 36
non-English language 40

Page 163

speciaL functions
type-ahead

KEYROW

line number table
linked lists
linking

functions
p rocedu res

machine code
procedures
programming

Manager traps
activate a job
adjust clock
allocate a bit of a

heap
allocate BASIC area
allocate resident

procedure area
allocate space in

common heap
create a job
find how much free

space there is
force remove a job
get information on job
get system information
keys
link external interrupt

handler
link in directory

driver
link in I/O driver
link in polled task
link in scheduler task
read clock
release a bit of a heap
re lease a job
release BASIC area
release resident

procedure area
release space in

common heap
remove directory driver
remove exte rna l

interruptchandler
remove I/O driver
remove job
remove polled task
remove scheduler task
send IPC command
set a job priority
set baud rate
set clock
set display mode
set pointer to trap

redirection vector

18
18
36,40

29
14~ 90

32
32

13
11-13
7,42-54
42,103
42,103

44,103
43,103

44,103

43,103
45,103

46,103
47,103
49,103
47,103
103

50,103

50,103
50,103
50,103
50,103
50,103
49,103
51 ,103
51 ,103

52,103

51 ,103
53,103

53,103
53,103
52,103
53,103
53,103
48,103
50,103
45,103
53,103
46,103

54,103

Page 164

suspend a job
Master chip
MD. READ
MO.SECTR
MO.VERIN
MD.WRITE
medium name
memory

a llocati on
block table
device driver
free
map
organi sat; on in

superBASIC
microdrives
microdrive support routines
MM.ALCHP
MM.ALLOC
MM.LNKFR
Mt4.RECHP
MT .ACLCK
MT . ACTIV
MT.ALBAS
MT.ALCHP
MT.ALLOC
MT.ALRES
MT.BAUO
MT.CJOB
MT.OMOOE
MT .FREE
MT .FRJOB
MT. INF
MT .IPCOM
MT.JINF
MT. LOO
MT. LIOO
MT.LNKFR
MT. LPOLL
MT. LSCHO
MT.LXINT
MT .PRIOR
MT.RCLCK
MT.ROO
MT.REBAS
MT .RECHP
MT .RELJB
MT .RERES
MT.RIOO
MT.RJOB
MT .RPOLL
MT .RSCHO
MT.RXINT
MT.SCLCK
MT .SUSJB
MT.TRAPV

name
decode

54,103
35
37,85,105
8,37,85,105
37,85,105
37,85,105
25

6,7~14,1S

98
19
5 , 6 , 14
5-7, 35

29
15,16,26,28,37
85
14,86,105
14,86,105
14,B7,105
14,87,105
36,42,103
42,103
14,43 ,103
6,14,43,103
6,44,103
14,44,103
36,45,103
45,103
16,35,36,46,103
46,103
47,103
6 ,40 ,47 ,1 03
36,40,48,103
49,103
1 9 ,23 ,50 ,1 03
19,50,103
49,103
1 9,23 , 50 ,1 03
19,23,50,103
19,23,50,103
50,103
36,50,103
1 9 ,51 ,53 ,1 03
14,51,103
6 ,1 4,51 ,1 03
51 ,103

-14,52,103
19,53,103
52,103
19,53,103
19,53,103
19,53,103
36,53,103
54,103
9,54,103

19,21,23,82,105

Page 165

li st
pointer
table

network
new Li ne
non-Eng l i eh

version codes
NTSC

on-board
RAM
ROM

operating system
extensions to

operations
executing lists of
executi on of

ownership

PAL
pan
parameter passing
pa rameters, actus l
peripheral card addressing
peripheral cards
peripheral chip
physical definition block
physical layer device driver
pipe
pixel coordinate system
plot
polling interrupt
priority
p rocedu res

li nki ng
SuperBASIC

program fi le
programming
promotion
publication

Odos
initialisation
keys
routines

queue[s)
asynchronous
handling
header
I/O
type-ahead

RAM
add-on
base
display
on-boa rd
screen
test

29,30
30
29-30,32,78
28,37
15,17
40-41
40
40

35
35
5
11 ,13

8B
88
106

40
17,71,104
32
33,79
39
38-39
35
23
13,19,20
15,28
16
72
20
11,50,51
32
32
11 ,13
29
35-37
1 OB-1 09
106

5
93-105
7-9
83
19
84
100
1B
18

5,14
35,38
5
5,35
35
35
10

Page 166

real-time clock
reCD lour; ng
resident procedure area
restrictions on cooe
return list
RI.EXEC
RI.EXECB

35,36
74
5,6,7,13,14
32
29
88,105
8B ,1 05

RI stack see erithmatic stack

add-on
format
on-board
plug-in

RS232 see serial I/O

save area
scheduler loop
screen

colour
170
RAM

screen character output
operations

screen driver
datablock

sera l Li ng
SO.ARC
SO.BOROR
SO .CHENQ.
SO . CLEAR
SD.CLRBT
SO .CLRLN
SO .CLRRT
SD.CLRTP
SO .CURE
SO .CURS
SO .ELIPS
SO .EXTOP
SO.FILL
SO.FLOOO
SO.FOUNT
SD.GCUR
SO. LINE
SO.NCOL
SD.NL
SD.NROW
SD.PAN
SD.PANLN
SO.PANRT
SD.PCOL
SO.PIXP
SO .POINT
SO.POS
SO .PROW
SO.PXENQ.
SO .RECOL
SO.SCALE
SO.SCRBT
SD.SCROL

8,15,3
7,35,38,39
28
35

97
20

76
16-18,28
35

17
28
100
74
18,72,104
17,65,104
17,73,104
17,66,104
17,66,104
17,66,104
17,66,104
17,66,104
17,67,104
17,67,104
18,72,104
18,68,104
17,68,104
18,69,104
17,70,104
18,72,104
18,72,104
73,104
73,104
73,104
17,71,104
17,71,104
17,71,104
73,104
71 ,104
18,72,104
73,104
73,104
17,73,104
17,74,104
18,72,104
17,74,104
17,74,104

Page 167

17,74,104 SD.SCRTP
SO .SETFL
SO. SETIN
SD.SETMD
SO .SETPA
SO.SETST
SO .SETSZ
SO.SETUL
SO. TAB
SO.WDEF

17,75,104
17,76,104
17,75,104
17,76,104
17,76,104
17,76
17,75,104
73 f 104
17,77,104

serial I/O
devi ce dri ver

serial network link
slave block

table
slaving
software

business
commercial
compilers, utilities
educa ti ana l
entertainment
games
review of

sound contro l
stack

a ri thmeti c
supervisor
user

start-up
job
system

storage
array
floati ng poi nt
integer
string
substri ng

strings, comparison of
string storage
substring storage
SuperBASIC

channe l tab le
format
data area
functi on
initialisation
interfacing _
memory organisation
procedures and

functions
program
traps
variables
work area

superv; sor
mode
stack

suspended job

15,18,28,36,84
28
28
6,26,98
26
16,24,26-27

108
106
107
107-108
107
107
107-108
36

29,33,79
9
39
5,10
11
10
30-31
31
30,31
30,31
31
31
89
31
31
5,6-7
6
97
13
32
10
29-34
29

11,13
6
7
6,94-96
5,6-7,29

7,9,32
9
11

Page 168

syst-em
job t_ob Le
m5nagemen~ tables

initialisation
start-up
va ri abtes

base
i nit i at i sa t ion

tabLes
channel
job

tasks

Li ne numbe r
memory bLock
name
system management

external interrupt
polLing interrupt
scheduLer Loop

time-out
token list
transient program area

trap(s)
#0
#1
#2
#3
#4
errors in
hardware interrupts
Input/Output
Input/Output control
keys
manager
redi recti on
software error
SuperBASIC
user

type, name tabLe
type-ahead queue

user
code
heap
traps

user stack
UT. CON
UT.CSTR
UT.ERR
UT.ERRO
UT. LINK
UT.MINT
UT .MTEXT

.UT.SCR
UT.UNLNK
UT.WINOW

12
5,6
10
10
5,6,12,93-94
5,93
10

29,33-34
12
29
98
29-30,32,78
5,6,10
11,13,19
20
20
20
18,22,42
29
5,6,7,11,13,14,45

7-8
7,9
7,9
7
7,9
7,13
8
9-10
7,13,58-77
7,55-57
103-104
7,42-54
9
9
7
9
29,30
18

6,14
14
9
39
92,105
89,105
89,105
89,105
90,105
91,105
91 ,105
92,105
90,105
92,105

Page 169

va lus pui-nter
variables.

Sups rtlASIC
syst-elli.

variable values area
vectoredriJ~tines

error handling
video

for monitor operation
for TV operation

wi ndows
border
c lea ri ng
colour
overLap
position
properti 85 and

operations
setting up
size

ZX8301
ZX8302

30

6,84-96
5,6,10,12,93-94
29,30
7,8,33,78-92,105
8
40
40
40

16,17
17,65
66
17,74
17
17

17
92
17

35
35

Page 170

Sinclair QL Preservation Project (SQPP)

On January 12th 1984 Sir Clive Sinclair presented the Sinclair QL
Professional Computer in a typical Sinclair-extravaganza type
launch event at the Intercontinental Hotel, Hyde Park Corner,
London. This was exactly 12 days earlier than Steve Jobs presented
the Apple Macintosh.

The QL still is a very good example of an innovative, stylish,
powerful and underestimated product. On one hand it failed in the
market but on the other hand it influenced many developments
which ended in many of today’s computers.

2009 was the year of its 25th anniversary in which month by month new activities were
launched.

Jan 12th – 25th Launch anniversary day. Message spread to VIP,
community and media.
http://tinyurl.com/ql-is-25

Feb 19th – Massive 11 pages coverage of the QL in the April Issue
of Personal Computer World (PCW) magazine.
http://www.pcw.co.uk

Mar 12th – Sinclair QL Preservation Project (SQPP) launched,
starting with Documents/Publications from Sinclair Research Ltd
and various computer magazines of the years 1984 to 1986.
http://tinyurl.com/sqpp25

2014 is the year of the 30th anniversary. Check out the brand new website
http://www.qlis30.org.uk/. Activities include THE MOVIE, THE STORY, THE
REPOSITORY, THE DISTRIBUTION and much more to come. Stay tuned...

QL forever!

Urs König (aka QLvsJAGUAR)
http://www.qlvsjaguar.homepage.bluewin.ch
http://www.youtube.com/QLvsJAGUAR
https://plus.google.com/104042128125238901905/posts

	1984_Sinclair_QL_Software_Developers_Guide_by_Tony_Tebby_and_David_Karlin-OCRed
	SinclairQL_Software_Developers_Guide_1984_TonyTebby_DavidKarlin
	QL Software Developers Guide Part 1
	QL Software Developers Guide Part 2

	SINCLAIR_QL_Preservation_Project_SQPP-V5_2014

