
GST Computer Systems limited

QC USER MANUAL

QC User Manual 9992.5 GST 63/1 .01

G~TComputer Systems Limited

CONTENTS

1 INTRODUCTION
1.1 Purpose and Scope of this Manual
1.2 Conventions Used in this Manual
1.3 QC Components list
1.4 What You Will Need to Use the Compiler and Write C Programs
i.5 Making Backup Copies
1.6 Other Useful Manuals and Books
1.7 Disclaimer
1.8 Copyright and Trade Marks

2 HOW TO RUN TIlECOMPILER
2.1 Compiler
2.2 Assembler
2.3 Linker
2.4 The Control Program "COMPILE"
2.5 Linking More Complicated Programs
2.6 The Window Manager Program
2.7 Using the Compiler with Floppy DiskE

3 TIlEQC LANGUAGE
3.1 Variables and Types
3.2 Operators and Expressions
3.3 Control flow and Statements
3.4 Functions and Program Structure
3.5 Pointers and Arrays
3.6 Preprocessor Commands

4 QC STANDARD I/O RUNTIME LIBRARY
4.1 Introduction
4.2 Standard Input and Output
4.3 File Input and Output
4.4 Random Access I/O
4.5 Formatted I/O
4.6 Format Conversion Functions
4.7 String and Character Handling Functions
4.8 Character Classification Functions
4.9 Character Conversion Functions
4.10 Other System Facilities

5 EXTRA QOOS LIBRARY ROUTINES
5.1 Interfacing with QDOS
5.2 Screen and Window Functions
5.3 Graphics Functions
5.4 Other QDOS Functions

Qc User Manual <' 9992.5 GST 63/1.01

iSI Computer Systems Limited

6 INTERFACING WITH ASSEMBLER CODE
6.1 Register Usage
6.2 The Memory Map of a QC Program
6.3 QC Stack Structure
6.4 Example of a Code Insert

7 THE COMMANDLINE AND 1/0 REDIRECTION
7.1 Passlng a Command Line to a Program
7.2 Redirecting I/O Channels
7.3 Interpreting the Command Line Within a Program

APPENDIXES

A Compiler Error Messages

B Summary of Library Routines

C Summary of Compiler, Assembler and Linker Options

D Differences Between QC and Standard C

QC User Manual 3 9992.5 eST 63/1.01

GST Computer Systems Limited Introducti on

1 INTRODUCTION

QC is a version of C specially produced for the Sinclair QL. It is a
subset of the standard C language as described in Kernighan & Ritchie.
It contains all the features of RatC (Appendix 1 of Berry & Meekings)
plus the following extras:

switch, for, do, goto statements
logical operators && I I
unary operators ! -
comma expressions
assignment operators
short / long integers
unsigned values
initialised local variables
static variables & functions

All the language features are described in more detail in section 3.
You are recommended to read this manual thoroughly before using the
compiler.

1.1 Purpose and Scope of this Manual

The QC User Manual provides an introduction to the QC compiler on the
Sinclair QL. It includes all the information you need to write
programs using the compiler, but does not attempt to teach the C
language.

1.2 Conventions Used in this Manual

When QC keywords, operators or variables are mentioned in the text,
they will be in bold. UPPERCASE will be used for SuperBASIC commands
and QDOS fi.Lenames,

When describing the language in section 3, syntax examples will have
keywords and other explicit language elements in bold, but generic
elements will be in angle brackets, eg:

do { <statement> J ~hile (<expression>);

The library routines described in section 4 all have the start of the
function declaration, giving the function names, its parameters and the
types of all of the parameters. This is all printed in bold.

The use of the word "module" in this manual refers to a group of
subroutines compiled together in one go, no Datter how many source
files go into it; It can refer to the assembler source file or the
relocatable relocatable binary file or the C source filets).

QC User Manual 4 9992.5 GST 63/1.01

iST Computer Systems Limited Introduction

1.3 QC Components List

The QC compiler comes with the following components:

* two microdrive cartridges containing the compiler, assembler,
linker, runtime library files and example programs

* two blank microdrive cartridges for making backup copies

* a copy of "A Book on C" by R. E. Berry & B. A. E. Meekings

* an A5 ring binder containing this manual

QC the QC compiler

QCASM the QC assembler (used as pass 2 of the compiler)

LINK the QL Linker

QC_LINK the linker control file

BACKUP a program to copy this tape

The microdrive tape labelled QCl contains the following files:

The microdrive tape labelled QC2 contains the following files:

QC_LIB the standard library file containing all routines
defined in section 4 of this manual,

QDOS_LIB the extra QDOS library file containing all routines
defined in section 5 of this manual

STDIO.H the standard I/O header file (see section 4)

COMPILE a C program to drive the compiler, assembler and
linker (See section 2.4)

WINDOW MGR a C program for adjusting programs' default windows

COMPILE C the source of the COMPILE program

BACKUP a program to copy this tape

In order to have enough space for your own programs, you should copy
the library files and the header file onto one microdrive, which will
then have room for your files .. Copy the others onto a different
micro drive which will be used less frequently.

QC User Mahual 5 9992.5 GST 63/1.01

GST Computer Systems Limited Introduction

1.4 What You Will Need to Use the Compiler and Write C Programs

This compiler will run on any QL, and does not need any add-on RAM.You
will need a text edi.tor program to create source files, for example the
ED program as provided with the Sinclair Assembler.

If you want to write large systems, floppy disks will be useful because
of the extra storage space, but microdrives can be used for programs of
up to a few hundred lines.

If you do not have a text editor, you can use QUILL to create your
program sources. The files produced by QUILL cannot be read directly by
the compiler: you must first print the text into a print file, using a"
appropriate printer driver. (Try pagelength 0, linelength 80, LF Lii
separator with no preamble or postamble.)

1.5 Making Backup Copies

It is strongly recommended that you make backup copies of the supplied
tapes before using them. The program BACKUPis supplied on each tape
and can be used to copy the tape. We suggest you then use the new tapes
for running the compiler and save the originals as backups.

To run the BACKUPprogram, put the tape to be copied in MDVl and a
blank tape in MDV2then enter the command:

EXECWMDVlBACKUP

The program will ask for the source and destination directory names if
you just press ENTER it will assume source is MDVl and destination
MDV2. It will ask whether you want to format the blaTIk tape. I~ you do
not format the tape, it will ask whether you want to over-write files on
the backup tape if they already exist. This option is useful when you
make backups of your working tapes. It will then copy the tape.

1.6 Other Useful Manuals and Books

The C programming Language
B. W. Kernighan and D. M. Ritchie (Prentice-Hall)

A C Reference Manual
S. P. Harbison and G. L. Stee1e (Prentice-Hall)

The C Programming Tutor
L. A. Wortman and T. O. Sicebottom (Prentice-Ha11)

Note that some of the example programs in these books will not work
with QC because they use features of C not supported by the compiler.

QC User Manual 6 9992.5 Gsr 63/1.01

GST Computer Systems Limited Introduction

1. 7 Disclaimer

Under no circumstances wiJl eST Conput.er- Systems Limited be liable for
any direct, indirect, incidental or consequential damage or loss
including hut not limited to loss of use, stored data, profit or
contracts which may arise from any error, defect or failure of the QC
compiler software.

eST Computer Systems Limited has a policy of constant development and
improvement of their products. We reserve the right to change manuals
and software at any time and without notice.

1.8 Copyright and Trade Marks

The QC compiler software on microdrive cartridge, together vi.t.h the QC
User Manual are Copyright (C) 1984, eST Computer Systems Limited.

QC is a trademark of eST Computer Systems Limited.

QLkit and QLToolkit are trade~arks of QJumpLimited.

QL, QDOSand Microdrive are trademarks of Sinclair Research Limited.

UNIXis a trademark of Bell Laborat0ries.

QCUser Manual '(9992.5 GST63/1.0],

GST Computer Systems Limited Howto Run the Compiler

2 HOWTO RUNTHECOMPILER

The QC compiler takes C program sou r-ce s (created with a text editor)
and converts them to assembler language text. This must then be
assembled using the QC assembler (the Sinclair Macro Assembler can also
be used). This produces a relocatable binary file. One or more
relocatable binary files are then combined with the runtime library by
the linker, to create an executable program file.

2.1 Compiler

The compiler program is called QC. Put the tape marked QCI (or a copy
of it) in MDVland your data tape (which is created from a copy of QC2)
in MDV2,then type the command:

EXECW r,mVl_QC

The compiler .ill start up and ask for a commandline. You can now type
the filename of the C program you want to compile - this is the
simples t command line.

If the filename you give is ~1DV2MYPROGthe compiler will first look
for MDV2MYPROGC and then for MDV2MYPROGif the C file cannot be
found. - -

The compiler will produce an output file named after the source
program: using the example above, it .ill create MDV2MYPROGASM

You can put more filenames on the command line, in which case all of
them are read as input, and the name of the first file is used to
create the output filename.

You can also include a number of options on the commandline. These all
start with a dash followed by a letter (upper or lower case):

-M monitor: write the first line of each function to the
screen as it is compiled.

-A alarm: the compiler will bleep whenever it prints an
error message to the screen.

-P pause: after printing an error message to the screen,
the compiler 'will wait for you to .press the ENTER key
tefore continuing.

-C comments: the C code is included in the output file as
comments, and the assembler code is formatted neatly.

-D <dir> directory: the specified directory is searched for
include files. Any device or directory name can be
specified here: eg -D MDV2

-L <name>listing: compiler listing output is sent to the
named file or device.

QCUser Manual 8 9992.5 GST 63/1.01

GST Computer Systems Limited Howto Run the Compiler

If a blank line is given to the compiler as a command line, it will
reprompt for another command line. If no filenames are given, but the
command line does contain some options, it "ill take data typed in at
the keyboard as the compiler source, and send its output to the screen.

If there are any compilation errors, the compiler will return a "not
complete" error code to QDOS.

2.2 Assembler

The output from the compiler is in as s emoLer source format. An
assembler is included wi t.h the compiler. Run the assembler by typing:

EXECW MDVl_QCASM

When the assembler asks for a command line, type the name of your file
(the final ASMcan be omitted) eg:

MDV2MYPROG

This will then ger.erate a binary file named after the source file - in
this case, MDV2_t-lYPROG_REL.

To produce a listing at the assembler stage, include in the command
line the option -LIST <filename>. See appendix C for a list of the
assembler op t.ions ,

If any errors are reported by the assembler it will return a "not
complete" status to QDOS. Check for functions or variables with the
same name as 68000 registers. You can ignore any warnings from the
assembler.

2.3 Linker

The linker is then used to comome your program with the runtime
library. A linker control file is included on QCl, called QCLINK. Run
the linker by typing: -

EXECW MDVILINK

and when the linker asks for a command line, type the name of the
binary file (the final REL can be omitted) followed by the name of the
control file, and any other linker options, eg:

MDV2MYPROGMDVl_QC_LINK-NOLIST

This will produce a program MDV2r~YPROGBIN which can then be executed
using EXECor EXECW. Sce appendiz C for-a list of linker options.

Note that the linker control file assumes that the library file QC_LIB
is on the tape in MDV2. You will have to edit the control file to
change this arrangement.

If there are any errors or warnings from the linker, or any multiply
defined or undefined symbols, do not try to run the program.

QC User Manual 9 9992.5 GST63/1_01

GST Computer Systems Limited How to Run the Compiler

2.4 The Control Program COMPILE

A program called COMPILE is included on the tape to drive the compiler,
assembler and linker together. It will ask for the name of the file to
be compiled, and will construct command lines for each program. You
should leave out tr.e ~ and just enter the name of the program:

EXECWMDV2COMPILE

Press Fl to select the compile option:

Name of file to compile? MDV2MYPROG

Note that the compile program can also be used to execute other
programs including the Window Manager and Backup programs.

The source of this program is included with the compiler as an example
program, and to allow you to change it if you wish. If you do recompile
this program, you must then adjust its data requirement down to 2k in
order to leave enough memory for the compiler. (You can do this using
the window manager program - see 2.6.)

2.5 Linking More Complicated Programs

To link more complicated programs involving more than one module, you
should create your own link control file. If you want to specify all
the modules named in the control file, take the supplied control file
MDVlQC LINK and replace the line "INPUT *" with an input directive for
each -of-the C modules to be linked together. Then run the linker with a
command line like this:

Alternatively, if you still want to name one of the modules in the link
command line, leave in the INPUT * line which tells the linker when to
read the module named in the command line. Follow this line by an lNPUT
directive for all the other modules.

-WITH MDV2MYCONTROLFILE

The linker control file should look like this:

SECTION
SECTION
SECTION
SECTION
SECTION
SECTION
SECTION
INPUT
INPUT
INPUT
LIBRARY
LIBRARY
DEFINE
DEFINE
DATA

QC User Manual

S.HEADER
S.GBASE
S.GLOB
S.CCODE
S.RBASE
S.RELOC
S.TRAILER
MDV2MYPROGlREL·
r.1I)V2- MYSUBSREL
MDV2-0THERCODEREL
MDV2-QDOSLIB -
MDV2-QCLIB
G$ =-C.GLOBBA
M$ = C.ENDGLO+ $8000
8K

10 9992.5 GST 63/1.01

GST Computer Systems Limited Howto Run the Compiler

If you have a complicated program which uses lots of stack, you may
want to change the DATAdirective in the control file to change the
vor-kspace used by the program. If you do not use any of the routines
listed in section 5 of this manual, you can delete the line which calls
for library file QDOSLIB to speed up the link operation. Other parts
of the control file should not be changed.

You can create a subroutine library by appending a number of
relocatable binary files together. If this is included in a link with
an INPUTdirective, all the modules will be included in the link. If a
LIBRARYcommand is used, the file will be searched, and only those
modules which resolve an undefined external reference will be
extracted.

2.6 The WindowManager Program

EXEC W .mV2 WINDOW MGR- -

This program is included to allow you to adjust the default window used
by any program written in C or any of the utilities included on the
tape.

The program will ask for the name of the program to adjust. The window
position and size can be adjusted interactively, and the program asks
for paper and ink colour. The windows can be defined with tags: the top
line of the window is reserved to display the prograr.; name.

This program also allows you to adjust the stack space reserved by a
program. You should not change this for any of the supplied programs.

When you run a program with a tagged vi ndov , it will be displayed
during prograrr: ini tialisa t ion , If the v indov is not tagged, it is not
cleared by the C program until it is uritten to. This allows filter
programs to be created uhich do not create ~ screen window.

2.7 Using the Compiler with Floppy Disks

If you have floppy disks on your QL, you can easily transfer the
programs across to take full advantage of the increased storage space
and speed.

None of the programs will need modi.fication to run on floppy instead of
microdrive - the "compile" program actuaUy checks to see if FLPl
exists and if not it defaults to MDVl.

You will need to change the linker control file whicr. names the library
files. This is an ordinary text file which can be ~pdated with a text
editor.

QCUser Io<anual 11 9992.5 GST63/1.01

GST Computer Systems Limited The QC Language

3 The QCLanguage

This section defines the language facilities provided by the QC
compiler. It is not intended to teach the C language: you are
recommended to read the book included with the compiler or one of the
other books listed in the introduction if you want to learn how to
program in C.

C comments start with /* and end with */ and they cannot be nested.

3.1 Variables and Types

Variables are the fundamental data objects manipulated in a program.
All variables in QC must be declared before they are used.

3·1.1 Variable Names

Variable names are made up from letters, digits, and the underline
character, and they must start with a letter. Only the first eight
characters in a variable name are significant.

Uppercase and lowercase are treated as different by the compiler:
it is conventional in C to use lowercase for variable names, and
uppercase for symbolic constants (see 3.6.2).

Some names are reserved, including all of the keywords (e g if,
else, int) and names beginning with "c " are reserved for use
within the runtime library. The names of-the 68000 registers (eg
AO, DO, USP)are also reserved.

3·1.2 Declarations

Variables can be declared globally (outside of any function) in
which case they are in scope from the declaration to the end of
the module, or locally in which case the variable is private to
the block or routine.

The types supported by QC are:

int 32 bits wide
long 32 bits wide (same as int)
short 16 bits wide
char 8 bits wide
pointers 32 bits wide

A declaration specifies an optional storage class specifier
followed by an optional type specifier followed by a list of
variable names.

Qc User Manual 12 9992.5 GST63/l.01

CST Computer Systems Limited The QC Language

Global variables can have the following storage classes:

(none) the variable is available outside the module in
extern directives.

extern the variable must be declared (without a storage
class specari er) in some other module. (See 3.1.4)

static the variable is private to the module.

The storage class specifier is ignored on local variables. The
allowed classes are auto and register. It is not normally
specified. The names are accepted for compatibility with other
compilers. Storage classes static and extern are not accepted by
QC for local variables.

The types short and long can be used on their own, or they can be
followed by into

An asterisk before the r.ame creates a pointer to objects of that
type, whereas square brackets are used to define arrays and
enclose the array size.

Examples:

int lower, upper, step;
long value;
short int word;
char c, buffer[512], *str;

Note that when defining an array of N locations they are accessed
using offsets ° to N-l.

3·1.3 Initialising Variables

Local variables can be initialised with any expression (but local
arrays cannot be initialised).

Global Lnt and char variables can initialised to constant values,
for example:

int i
j

char c

0,
(345*678)+123;
t ? I ;

Initialised and uninitialised variables can be mixed in the same
declaration. Global a r r ays can be initialised by giving the
initial values in curly brackets:

shortint array[lOj = (0, 1, 2, 3];

The number of initialised array elements can be less than the size
of the array, in which case the rest of the array is
uninitialised. The array size ~an be left out, in which case the
number of initialised elements is taken as the array size.

QC User lIanua1 13 9992.5 GST63/1.01

GST Computer Systems Limited The QC Language

A character array or character pointer can be initialised with a
string constant, for example

char
*pointer
string[J

!la string",
"another string!!;

In C, strings are arrays of characters terminated by a zero byte.

3.1.L External Variables

Global variables declared in other modules can be referenced using
the extern directive. This may not be used inside functions, as it
is treated like a global variable definition. The symbol is then
in scope until the end of the module.

If an array is declared external you do not specify the array
size, but use an empty pair of square brackets.

External variable directives cannot have initial values: the
variable can be initialised in the module which declares it.

extern int
qwerty, *pointer,
datarray[J;

example:

3·1. 5 Unsigned Values

The keyword unsigned can be put at the start of any declaration,
to indicate that the variables are to be treated as unsigned
numbers. Unsigned arithmetic is then used in expressions including
unsigned variables. Examples:

short i;
unsigned short u;

i = 40000; /* overflow: treated as -25536 */
u = 40000;

i = i/2; /* result is -12768 */
u = u/2; /* result is 20000 */

char values range from -128 to 127
short values range from -32768 to 32767
int values range from -2147483648 to 2147483647
unsigned char values range from o to 255
unsigned short values range from o to 65535
unsigned int values range from o to 4294967295

QC User Manual 14 9992.5 GST 63/l.01

GST Computer Systems Limited The QC Language

3.2 Operators and Expressions

3.2.1 Constants

The constants accepted by QC are:

decimal numbers eg -1, 76890, 1000000000, -999

octal numbers eg 012, 0377
(starting with a zero digit)

hex numbers eg
(start with Ox)

OxOa, OxFF

character constants eg 'a' 'DE'

string constants eg "I am a string It

Note that character constants actually generate int values, and
can have one or two characters in them, whereas a string constant
is actually an array of characters terminated by a null byte: the
value of a string constant is the address of the array.

String and character constants interpret the backslash character
specially to specify some characters:

\n is a newline code
\f ascii FORMFEED
\t ascii TAB
\b ascii BACKSPACE
\' a single quote (for use in character constants)
\" a double quote (for use in strings)
\\ the backslash character itself
\l23 (up to 3 digits) interpreted in OCTAL
\0 (special case of above) null
\xl2 (up to 2 digits) interpreted in HEX

QC User Manual 15 9992.5 GST 63/1.01

GST Computer Systems Limited The QC Language

3·2.2 Expressions

Some operators require an "lvalue" operand. An LvaLue is an
expression referring to an object: a variable name is the s:i.mplest
case, but array indexing and pointer indirection are also Ivalues.

When (signed) char or short values are used in expressions> they
are sign-extended to into When unsigned char or short values are
used in expressions they are padded with zeroes to unsigned long.

A summary of operator precedence is given at the end of this
section 0.2.8).

Overflow is always ignored when evaluating an expression.

3·2·3 Primary Expressions

Constants, variables a.d strings are all primary expressions.

Any expression in parentheses is a primary expression. Parentheses
are used in this way to control expression evaluation order.

A primary expression followed by an expression in square brackets
is a primary expression. This is used to index arrays.

A primary expression followed by a sequence of zero or more
expressions enclosed in parentheses is a function call, all of
which is a primary expression.

3.2.4 Unary Operators

Unary operators group right-to-left. The unary operators are:

" indirection: the expression is normally a pointer, and
the result of the expression is the value pointed to.

& address-of: t.nis can only be applied to an <lvalue> s and
returns the address of the Ivalue.

unary minus: gives the 2' s complement of the expression

logical not: returns 0 (FALSE) If expression is non zero
(T::lUE), or 1 (TRUE):i.f the expression is zero (FALSE).

ones co:nplemer.t: bitwise complement

++ -- increment and decrement: these can be prefix or postfix
operators. The operand must be an <Lval.ue»,

If ++ is used in prefix mode, the value is incremented
and the r-e sul t of the expression is the new value. If ++
is used in postfix mode, the value is incremented and
the result of the expression °is the original value.

-- works similarly.

QC User Manual)6 9992.5 eST 63/1.01

GS' Computer Systems Limited The QC Language

3·2·5 Binary Operators

All binary operators group left-to-rignt, so if an expression
contains operators of equal precedence, they are parsed from the
left. For example:

a - b + C is parsed as ((a - b) + c)

The operators in this section are listed in order of decreasing
precedence, but operators of equal pre.cedence are groupe d
together.

If either operand to an operator is unsigned, then both operands
are regarded as unsigned, unsigned arithmetic is used and the
result is unsigned.

•• multiply
I divide% remainder

14ultiply overflow is ignored. Division truncates towards zero: the
sign of the remainder is the same as the sign of the divisor. It
is always true that:

((a/b)*b + a % b) a /* Provided b is non zero */

+ add
subtract

If an integer value is added to (or subtracted from) a pointer, it
will be scaled by the base type of the pointer, so if p is a
pointer into an array, p+l is a pointer to the next object in the
array.

If two pointers to objects of the same type are subtracted, the
result is scaled to give the number of objects between the two
pointers. This is only useful if toth pointers point into the same
array.

« shift left
» shift right

Shift left fills with zero bits. Shift right (unsigned) fills with
zero bits, but preserves the sign bit on signed values.

Qc User M3.nual 17 9992.5 eST 63/1.01

GST Computer Systems Limited The QC Language

< less than
<= less than or equal
>= greater than or equal
> greater than

equal
!= not equal

These operators return 1 (TRUE)
o (FALSE) if the relation is false.
if either operand is unsigned.

if the relation is true and
Unsigned comparisons are made

& bitwise and
bitwise exclusive or
bitwise inclusive or

These operators perform a bitwise operation on the values and
return an integer result.

&& logical and
11 logical or

The logical operators test whether values are zero or nonzero, and
return a value which is zero or one. They guarantee left-to-right
evaluation of operands, but the right operand is not evaluated if
the left operand determines the result.

3·2.6 Assignment Operators

Assignment operators group right-to-left, and the result of the
operation is the value assigned. It is therefore possible to
perform multiple assignments, so for example

*fred = bert[l] = thing = 0;

sets thing to zero, then sets a location in array bert to zero
then sets the object pointed to by fred to zero.

<lvalue> = <expression>

This i.s simple assignment: the expression is evaluated and the
result saved in the variable or location specified by the lvalue.

When assigning to a char the value is truncated to 8 bits and
higher bits are lost. Values are truncated to 16 bits for
assignment to short objects.

QC User Manual]8 9992.5 eST 63/1.01

GST Computer Systems Limited The QC Language

Other assignment operators perform some arithmetic on an object:

<lvalue> <op>= <expression>

<op> can be anyone of:

+ - * I % » « & -
Note there can be no space between the <op> and the equals symbol.

The behaviour of a <op>= b
is equivalent to a = a <op> b
but a is only evaluated once.

3·2·7 Comma Expressions

<expression> , <expression>

A pair of expressions separated by a comma are evaluated left-to-
right. The value of the first expression is discarded, and the
expression on the right gives the value of the whole expression.

Comma expressions are typically used where the syntax requires an
expression, but a number of side effects are required, for
example in the control expression of a while loop:

while (++ptrl, fred += increment, c = *ptrl, c != EOF)
print (c);

Note that when the context imposes another n.earung on the comma
character (eg in the list of parameters to a function) a comma
expression should be enclosed in brackets to avoid confusing the
compiler, for examp.Les

func (a, (b=2, b+3), c);

QC User M3.nual J9 9992.5 GST 63/l.0l

GST Computer Systems Limited

3.2.8 Operator Precedence Summary

(starti~g with most binding):

<pri:nary>
<primary>

<expression>s ...)
<expression>]

* <expression>
& <lvalue>
- <expression>

<expression>
<expression>

++ <lvalu8>
-- <lvalue>
<lvalue> ++
<lvalue>

••. 1 %

+ -

« »

< <= =>
!=

&

<expression> && <expression>
<expression> 1 I <expression>

The QC Language

function call
array indexing

indirection
address of
unary minus
unary logical not
unary bitwise complement
pre :ncrement
pre decrement
post increrr:ent
post decrement

mu.Lt i p.Li ca t i.ve.ope ra tor-s

additive operators

arith~etic shifts

inequalities
equality operators

bitwise logical operators

logical and
logical or

= += -= *= 1= %= »= «= &= ~= 1= assignment operators
<expression> J <expression> co~~a operator

QC User Manual 20 9992.5 eST 63/1.01

GST Computer Systems Limited The QC Language

3.3 Control flow and Statements

A note on semicolons: in C, semicolons are not used to separate or
terminate all statements: they are part of the syntax of certain
statements.

3·3·1 Expression Statement

<expression> ;

An expression statement is an expression followed by a semicolon.
Usually expression statements are assignments or function calls.
Examples:

a = 1;
ptr++j
func (a, b, c);

<declarations> <statements>

3·3·2 Compound Statement (Block)

A compound statement allows several statements to be used where
the language syntax requires one statement. It also allows local
variables to be defined.

A compound statement is a pair of braces (curly brackets)
containing zero or more declarations followed by zero or more
statements. For example:

int a, b;

a = getval();
b = getval();
putval (a + b)j

3·3·3 Conditional Statement

The two forms of the conditional statement are:

if <expression> <statementl>

if <expression> (statementl> else (statement2>

In both cases, the expression is evaluated. If it is true
(nonzero), statementl is executed. In the second case, if the
expression is false (zero) statement:? is executed.

As there is no "endif" construction in C, an else is alway s
associated with the most recent incomplete if statement.

QC User M3.nual 21 9992.5 GST 63/1.01

GST Computer Systems Limited The QC Language

3.3.4 WhHe Statement

whi1e (<expression> <statement>

The expression is evaluated and if true (non zero) the statement is
executed and the loop repeated until the expression becomes false.

3·3·5 Do Statement

do <statement> while <expressi~n>);

The statement is executed then the expression is evaluated. If thp
expression is true (nonzero) the loop is repeated.

3.3.6 For Statement

The for statement has the form:

for (<expressionl> ; <expression2>
<statement>

<expression3>)

This is functionally equivalent to:

<expressionl> ;
while (<expression2>
{

<statement>
<expression3>

The first expression is the loop initialisation; the second is t.he
loop termination test, evaluated before each iteration; the third
expression is t.he loop re-initialisation, often incrementing some
counter.

Anyone of the three expressions may be left out: if expression2
is left out, the loop is executed continuously - see the break
statement in 3.3.8. For example:

for (count=O ; ; ++count
(int c;

c = getchar();
if (c == EOF) break;
putchar(c);

Variables used in a for statement must be predeclared, unlike some
other languages.

QC User M'U1ual ?2 9992.5 eST 63/1.01

GST Computer Systems Limited The QC Language

3·3·7 Switch Statement

The switch statement has the form:

switch (<expression>) <compound-statement>

The expression is evaluated, and the result is used to select
which part of the compound statement is executed.

Each statement in the compound statement can be labelled with one
or more case prefixes:

case <constant-expression>

There can also be one default prefix, of the form:

default:

The value of the switch expression is compared with each case
constant. If one of the case constants matches, control is passed
to the statement after that prefix. If no case constant matches,
and there is a default prefix, control is passed to the statement
after the default pr-ef'ix. If no constant matches and there is no
default then none· of the statements in the block are executed.

See the break statement <3.3.8) for exiting a switch statement. If
the break statement is not used, execution of the code will "drop
through" past labels into the following statements.

Declarations are not allowed in the compound statement of a switch
statement.

Example:

switch (ch)
{

case la': case 'e': case 'i': case '0': case 'ut:
print ("Its a vowel");
break;

case 'y':
print ("Sort of a vowel");
break;

case If': case 'hI: case '1': case Ir': case '5':
print ("Soft consonant");
break;

default:
if (isalpha (ch))

print ("Consonant");
else print ("Not a letter");
break;

QC User Manual 23 9992.5 GST 63/1.01

GST Computer Systems Limited The QC Language.

3.3.8 Break, Continue and Return

The statement

break;

exits the current loop or switch statement.

The statement

continue;

causes the rest of the current loop to be skipped, and start~
another iteration of the loop.

The statements

return;
return <expression>

exit the current function. In the first case the result of the
function is undefined. In the second case the expression is
evaluated and returned as the function result.

3·3·9 Coto Statement

The goto statement has the form:

goto <label> ;

"here the label is defined in the current function like this:

<label>

A label name is constructed in the same way as a variable name.

QC does not allow gotos ·into or out of blocks which have local
variables.

3·3·10 Null Statement

The null statement consists of just a semicolon. It is often used
in loops where the whole work of the loop is done by side-effects
of the control expression, as in this example:

while (*dest++ = *source++)

Here the bytes pointed to by source are copied to dest and both
pointers are incremented. The loop is terminated when a null byte
is transferred, as the result of the assignment is then zero.

cc User Manual 24 9992·5 GST 63/1.01

GST Computer Systems Limited The QCLanguage

3.4 Functions and Program Structure

3.4.1 Program Structure

A C program is built up from a number of functions. (There is no
distinction in C between functions and procedures - all functions
return a value, but the value can be undefined, and the value
returned by a function call can be ignored.) There is no "main
program" in C, but each program. has one function called main which
is called when the program is executed.

A C program source file therefore contains a number of function
declarations, together with optional global or external variable
declarations (see 3.1.2) and/or optional preprocessor directives
(see 3.6).

3.4.2 Function Declarations

<name>(<arg-list> ...) <arg-declarations> ...
{ <declarations> ... <statements> ...

A function declaration is constructed' as above. It starts with the
function name (function names are constructed in the same way as
variable names) fOllowed by parentheses enclosing the list of
arguments.

arg-list is a list of zero or more argument names (separated by
commas). These are the names by which the arguments are known
within the function. The names are in scope for the whole
function.

arg-declarations is a series of declarations specifying the types
of the arguments. Each argument must be declared as either int or
char or a pointer to one of these two. If the name is prefixed by
an asterisk it names a pointer. to the type specified, eg:

afunction (i, j, ch, str
int i, *j;
char ch, *str;
(.... }

In this example, ~ ~s declared to be an integer, j is a pointer to
an integer, ch is a char and str is a pointer to char.

An array is passed to a function as the address of the first
element in the array. As an alternative to declaring an array
argument type as a pointer (using an asterisk) it can be declared
using a pair of square brackets, eg:

func (array) int array[];

In this case, the parameter array is still a pointer to the base
of the array, but the syntax suggests to the. programmer that an
array is to be processed.

cc User Manual 25 9992.5GST 63/1.01

GST Computer Systems Limited The QC Language

After the argument declarations comes the function body, which
must be a compound statement.

A function which has no parameters is declared as follows:

func () (... I

3.4.3 Function Calls

To call a function, the function name is followed by a list of
parameters, in parentheses. Each parameter can be any expression:

afunction (value ()-123, &intarray[17], 'O'+digit, string);

Each parameter expression is evaluated, and a copy of the value is
made before the function is called. It is this copy which is used
by the function as its parameter. Arguments are therefore passed
by value. If you want a function to be able to update some
variable, you pass the address of the variable to the function:

main()
(

int a, b;

swap &a, &b) 1* call function to swap variables *1
1* note addresses are passed */

swap (addra, addrb) 1* this is the swap function */
int *addra, *addrb;
1* the parameters are defined as pointers *1

int temp;

temp = *addra;
*addra = *addrb;
*addrb = temp;

1* the locations pointed to *1
1* get modified here *1

If a function has no parameters, it is called by following the
function name with an empty pair of parentheses, eg:

fune() ;

3.4.4 Function Results

All functions return results, but the result returned by a
function is undefined unless the function executed a return
statement with a return value (3.3.8).

QC User Manual 26 9992.5 eST 63/1.01

GST Computer Systems Limited The QC Language

In QC, all functions return an int value. Pointers can be returned
from functions because a pointer variable is the same number of
bits as an integer variable, and the value is unchanged by QC when
a pointer is assigned to an integer or vice-versa.

3·4.5 Static Functions

If a function is declared to be static its name is not available
to other modules, just like a static variable. The function name
is just preceded by the word static in t~e declaration:

static <name> (<arg-list> ...) <arg-declarations> ...
{ }

3.4.6 External Functions

If a function exists in another module, it can be declared as
external as follows:

extern int <name> ();
extern int (* <name>) ();

(Note that the function list is not declared here.) The word int
can be left out of the declaration, as the default type in an
extern declaration is into The second form of the declaration is
treated as equivalent to the first by QC, but full C compilers
treat it as declaring a pointer to a function.

At the end of a module, any undefined symbols are assumed to be
external functions.

3.4.7 Parameters which are Function Addresses

It is possible to call a function and pass a~ one of the
parameters (the address of) ano t.her function which it in turn
calls. This can be done in QC using the following syntax in the
declaration and in the call:

(* <name>

For example, funcl is a function which takes a function parameter
and is declared like this:

fun cl (arg) int (* arg) 0;
/* arg is a pointer to it function */

(* arg) (); /* the function is called like this */

The call to funcl with parameter func2 looks like this (the
function is named on its own with no parentheses):

funcl (func2);

QC User Manual <'7 9992.5 GST 63/1.01

GST Computer Systems Limited The QCLanguage

3.4.8 Functions with a Variable Number of Parameters

Normally, the number of parameters passed to a function when it is
called should be the same as the number of parameters declared for
the function.

Some functions (eg printf in the library - 4.5.1) require a
variable number of arguments.

If you want a function with a variable number of parameters (like
printf) it can find the number of parameters passed by calling the
library routine ccargc(). (This routine must be called at the
start of the function before any other functions are called.)
Using this and the information that the arguments are stored as
ints in reverse order on the stack, it is possible to access all
the arguments correctly. Note this is not portable. Example:

func (arg) /* declare one arg for the function */
int arg; /* as an integer */

int numargs, /* this will hold the number of args */-
argp; / this will be used as a pointer to them */

numargs = ccargc(); /* get the number of args */

argp = &arg + numargs-l; /* point at the first arg */

while (numargs--) /* for each arg, in order, */
process (*argp--); /* process it & step to next */

See section 6 for more information on the arrangement of function
parameters on the stack.

QCUser Manual 28 9992.5 GST63/1.01

GST Computer Systems Limited The QCLanguage

3.5 Pointers and Arrays

3.5.1 Pointers

Variables which hold the addresses of other variables are called
pointers. They provide a very powerful and flexible mechanism for
processing data.

Pointers are typed according to the type of object being pointed
to. This is because ints take four bytes of memorybut chars take
only one byte. Pointers are manipULatedaccording to the size of
object pointed to: if you add one to a character pointer, it then
points to the next character, and if you add one to an integer
pointer it points to the next integer, although this is four bytes
wide.

Any value added to or subtracted from an integer pointer is
therefore scaled by the compiler to allow. for the size of
integers.

When the difference is taken between two pointers, the result is
the number of objects between them, not the number of bytes. (If
the pointers are not of the same type, or do not point into the·
same array, the results are undefined.)

The syntax for declaring a pointer is the same as the syntax for
declaring integer and char variables, except that the variable
name is prefixed with an asterisk:

<type> .•. <name>;

If a pointer is used in an expression on its own, the address is
used or altered according to the expression. If the pointer is
preceded by an asterisk, the value pomt.ed to will be used in the
expression or updated by the assignment, for example:

int fred, *ptrl, *ptr2;

ptr2 = 0; 1* sets the pointer to zero *1
ptrl = &fred; 1* sets the pointer to point at fred *1
ptrl = 0; 1 sets the integer pointed to by ptrl (f'r-e d-) *1
fred = *ptrl; 1* uses the integer pointed to by ptrl *1
ptr2 = ptrl 1* copies the pointer value *1

QCUser Manual 29 9992.5 GST 63/l.0l

GST Computer Systems Limited The QCLanguage

3·5·2 Arrays

Arrays in QC are restricted to a single dimension (but see the
next section). They are declared by following the array name with
square brackets containing the array size (which must be a
constant expression):

<type> <name> [<constant expression>

For example:

int arrayl [10 * 100 1;
char buff [512 1;

If an array is declared in an extern directive, you leave out the
array size, as it is specified in the other module.

To access an element in an array, the following syntax is used:

<name> [<expression>

The first element in the array is accessed with an offset of zero,
and if an array has N elements the last element is accessed using
offset N-1.

An array name on its own stands for the address of the (first
element of the) array. It can be used in expressions as the
address of the array (eg it can be assigned to a pointer) but it
cannot be altered itself.

Note that pointer syntax can also be used for addressing arrays:
the following two expressions are equivalent:

array [offset 1;
* (array + offset);

QCUser Manual 30 9992.5 eST 63/1.01

GST Computer Systems Limited The QC Language

3.5·3 Simulating Multidimensional Arrays

Although QC will not create multidimensional arrays, it is
possible to set up dn array of pOinters (sometimes known as an
lliffe Vector) which allows a single dimensional array to be
accessed as though it is two dimensional.

An array of pointers is declared by putting both an asterisk and
brackets on the array name, for exa~ple:

int * index [16J,
table [256 J;

/* array of pOinters to integers */
/* array of integers */

If' the elements of index are set to point to every 16th element of
table, we have simulated a 16 by 16 array. The pointers could be
set up as follows:

int i;
for (~=O ; i < 16 ; ++i)

index [i J = &table[16*i J;

The array can then be accessed as follows:

index[a][b l:

index[al takes one of the pointers in index, and gives a pointer
into array table. The second array access gives us one of the
elements in that part of array table.

QC User Manual 31 9992.5 GST 63/1.01

GST Computer Systems Limited The QCLanguage

3.6 Preprocessor Commands

These preprocessor commandseffectively manipulate the C source before
it is compiled. The preprocessor can be considered as an extra pass to
the compiler, but the changes are actually made as the compiler reads
the text.

All of these preprocessor directives should be used on a line on their
mm.

3.6.1 The Include Directive

The include directive has two forms (the angle brackets are part
of the syntax here):

I/include "filename"

Hinclude <filename>

No spaces are allowed within the quotes or brackets.

This directive allows a file to be included in the compilation at
this point. It can be used to make exactly the same s et of
definitions and directives in each of a Ret of modules.

Both forms of the directive as shown above are accepted by the
compiler, but they are treated the same. (The two different forms
indicate to some C compilers to search for the. file in different
directories.)

The filename specified in this directive should be the complete
QDOSname of the file to be included, or if compiler option -D is
being used (Section 2) the device or directory prefix can be
omitted. The filename can be specified in upper or lower case.

Included files cannot be nested: if FILEA includes FILEB, and
FILEBincludes FILEC, then at the end of FILEC the rest of FILEB
is skipped, and the' compiler continues reading FILEA.

This directive can only be used at the top level of a program, ie
amongst function declarations and global variable declarations. It
cannot be used within a function.

QCUser Manual 32 9992.5 GST63/1.01

GST Computer Systems Limited The QCLanguage

3.6.2 Macro Substitution

'define <macroname> <macrotext>

This directive defines a macro which then stands for the arbitrary
text on the rest of the line. When the macroname is encountered
later in ·the module, the compiler replaces it by the macro text.

Macro names must obey the same rules as variable names, but it is
conventional to use uppercase for macro names.

Macro names are commonlyused to give names·to constants, but they
can be used to replace anything.

Macros can only be defined' outside of functions, but macro
substitution occurs anywhere in the rest of the program. (Except
in strings and character constants.)

Note'that macro substiution is performed on macro definition
lines, so macros can be defined in terms of earlier macros.

Macros with parameters are not implemented in QC.

3·6.3 Conditional Compilation

Rifdef <macroname>

Rifndef <macroname>

Relse

Rendif

These directives allow the compiler to compile different sequences
of code according to whether the macro is defined or not defined.
Different versions of the same program can then be compiled by
changing 'define directives at the top of the program.

Conditional compilation directives can occur anywhere in a
program.

3.6.4 Assembler Code

lasm

Hendasm

These directives allow assembler code to be included in a program.
They can be used outside of functions, or within a function
anywhere where a statement is allowed. AJl ·68000 instructions are
accepted. For details of assembler syntax, see the Sinclair Macro
Assembler manual. See section 6 for information on accessing C
data from assembler code. .

QCUser M3I\ual 33 9992.5 GST63/1.01

CST Computer Systems Limited The QC Language'

3.6.5 Listing Control Directives

Hnolist

Hlist

/lpage

These directives can be used to control the layout and contents of
the co~piler listing. You might like to turn off listing for an
included file containing a lot of rracro definitions, or maybe
start a new listing page for each function in a program.

QC User M3.nual 34 9992.5 GST 63/1.01

;ST Computer Systems Limited Standard I/O Runtime Library

4. QC Standard I/O Runtime Library

4.1 Introduction

The description of each function in this section starts with the
function declaration, in bold, which defines the order and types of the
parameters.

Programs which use the run time library should include the standard
header file STDIO.H which defines symbols for file descriptors and
values returned by the library routines. For example:

#include "MDV2 STDIO.H"
#include <FLP1-STDIO.H>

If compiler option -D is used (see section 2) it is possible to leave
out the device or directory name from filenames used in include
statements, eg:

Hinclude <stdio.h>

The definitions in STDIO.H include:

EOF ~ -1 returned by read routines when they reach the end of file

ERR ~ -2 which is returned by some routines when an error is detected.

NU~ 0 used as a null pointer value.
It is returned by some routines as a success code and by
others as an error code.

ns~ 1
NO ~ 0 These values are returned by some routines eg feaf

cc User Motnual 35 9992.5 GST 63/1.01

GST Computer Systems Limited Standard I/O Runtime Library

4.2 Standard Input and Output

The following library routines can be called by programs which use only
the standard input and standard output channels a character at a time.
By default, the keyboard is read as the standard input, and standard
output is sent to the screen.

See section 7 for information on I/O redirection.

Note that input and output are buffered by the QC
putcbar to write a character to the screen,
immediately. Buffers are flushed at the' end of
routine fflush (4.3.9).

library: if you call
it will not appear
each line, but see

The screen window used for standard I/O will not be cleared by.tl
library until it is written to. This means that programs Which have
redirected channels may not have any visible screen window. (Tagged
windowsare always displayed - see section 2.6)

4.2.1 getchar ()

Returns .a character read from the standard input channel, or the
value EOF at the end of file.

4.2.2 putchar (c) int c;

Writes the character to the standard output channel. The value c
is returned if the write completed sucessfully, or EOFis returned
if an error occurred.

4.2.3 puts (str) char *str;

This writes the string to the standard output, up to but excluding
the null byte at the end. It then writes a newline to the standard
output.

QC User Manual 36 9992.5 GST63/1.01

GST Computer Systems Limited Standard I/O Runtime Library

4.3 File Input and Output

These routines allow access to any file or device. In these calls, the
parameter fd is a "file descriptor" which can be the value returned by
one of the open calls (it should have the type pointer to int) or one
of standard file descriptors:

stdin
stdout
stderr

for standard input
for standard output
for standard error output

)
Data written to stderr is always sent to the screen - it cannot be
redirected like stdout. It is also permissible to read from stderr, in
which case the keyboard will be read, regardless of stdin.

These standard files can be used without calling fopen.

4.3.1 fopen (name, mode)
char *name, *mode;

This opens a channel to the named file. It returns a file
descriptor on success, or the value 0 if it fails. mode car, be one
of the following strings:

"r" open for read (the file must already exist)

"v" open for write (in which case the file is deleted first
if it already exists, and then re-created)

"a" open for append (the file is created if it does not
already exist, and is positioned to the end of file if
it does exist. This cannot be used for output to devices
such as the screen.)

"d" open a directory: see section 5.4.11
If this routine is called to open a channel to "CON" or "SCR "
(Le without any window specification) then the same QDOSchannel.
will be used as for stderr. If you van t a separate window, put
some window specification in the filename.

4.3.2 freopen (name, mode, fd
char *name, *mode;
int *fd;

This can be used to close a channel then reopen it to another
file. It returns fd on success, and zero on failure.

4.3·3 fclose (fd) int *fd;

This closes the channel and flushes any data still in memory tc
the operating system. Zero is returned for success and a nonzero
value for error.

QCUser Manual 37 9992.5 GST63/1.01

GST Computer Systems Limited
4.3.4

4.3.5

4·3·6

4·3.7

4.3.8

4.3.9

Standard I/O Runtime Library

getc (fd) int *fdj
fgetc (fd) int *Cdj

These routines are equivalent. They return a character read from
the specified input channel, or EOFat end of file or if an error
cccurs.

ungetc (c, fd) char Cj int *Cd;

This function can be used to backup one place in an input file. It
does not actually reposition the file, so it can be used on
sequential" devices. The next time the file is read the value·
will be returned. The value c is returned b)' ungetc unless
previously saved character is in the buffer or if c has the value
EOF, in which case ERRis returned.

fgets (str, size, fd
char *strj
int size, *Cdj

This routine is called to rea d a line from a file. str is a
pointer to a buffer and size is the maximumnumber of bytes which
may be read. Input is terminated by a newline character. A null
byte is put in the buffer after the newline.

If the line is too big for the buffer, size-l data bytes are put
in the buffer and null byte is put at the end.

The routine returns str on success or NULLon failure.

putc
fputc

char c; int *fdj
char c; int *Cd;

c, fd
c , fd

These routines are equivalent. They write the character c to the
file specified by fd. The value c is returned unless an error
occurs in which case EOFis returned.

fputs (str, fd) char *str; int *Cd;

This writes the string out to the file, up to but not including
the terminating null byte. No newline is appended at the end.

fflush (fd) int *Cd;

This routine is called to write data out to a file or device which
has been buffered by the QCruntime library. It can be used to
force a partial line to be written out to the screen: data to the
screen is flushed automatically at the end of each line. This
routine is called by fclose.

38 9992.5 GST 63/1.01QCUser Manual

GST Computer Systems Limited
4.3·10

4.3.11

4.3.12

4.3.13

4.3.14

4.3.15

Standard I/O Runtime Library

isatty (fd) int *fd;

This routine returns YES if the channel has been opened to a
serial device (eg the screen or a commsline) or NOif the device
supports random access (eg MDV or floppy disks).

iscons (fd) int *fd;

This routine returns YES if the channel is connected to the screen
or keyboard otherwise it returns NO.

delete
unUnk

char *name
char *name

name
name

These routines are equivalent. They delete the fiie specified by
the filename, and return NULLon success or EOF on failure.

feof (fd) int *fd;

This routine returns YESif the fd has reached the end of file,
else NO.

ferror (fd) int *fd;

This routine returns the system status code associated with the
last system call for f'd,

ferror (0) is a special case: it returns the system status code
associated with the last file open call.

clearerr (fd) int *fd;

This clears any error status as soci at.ed with the file fd.

QCUser Manual 39 9992.5 eST 63/1.01

GST Computer Systems Limited Standard I/O Runtime Library

4.4 Random Access I/O

The following routines can be used to move around files. A file
position is a positive integer value, giving the position in bytes from
the start of file.

4.4.1 rewind (fd) int *fd;

This routine repositions a. file to the beginning. It returns NULL
on success, EOF on error. It is equivalent to lseek(fd,O,O) (se"
below) .

4.4.2 getpos (fd) int *fd;

This routine returns the current file position, or EOF if the
channel does not support randofflaccess.

4.4.3 Iseek (fd, offset, from) int *fd, offset, from;

This routine positions the file to a position offset bytes from
the place specified by from:

from
from
from

o
1
2

position relative to start of file
position relative to the current position
position relative to the end of file

The routine returns NULL on success or EOF on error.

QC User M3.nual 40 9992.5 GST.63/l.01

GST Computer Systems Limited Standard I{O Runtime Library

4.5 Formatted I/O

4.5.1 printf (str, argl, arg2, ...) char *str;

This function writes a formatted character string to the standard
output channel. str is a "control string" which contains ordinary
characters and conversion specifications. The ordinary characters
are written out unchanged. Each conversion epecification indicates
how the corresponding arg is to be converted before output.

The function returns as its result the number of characters
written.

The conversion epecifications start with the character % and end
with a letter. Between these characters can be optional fields
giving extra formatting information:

a minus sign indicates left-justify within field

a decimal number give s field "id th: if specified with a
leading zero, the field will be padded
with zeros.

a decimal fraction number of characters to take from string

The terminating letter indicates the type of conversion:

b unsigned integer, convert to binary
c character
d signed integer, convert to (signed) decimal
0 unsigned integer, convert to octal
s string address
u unsigned integer, convert to (unsigned) decimal
x unsigned integer, convert to hexadecimal

If an invalid character is encountered, it is written out as a
text character, so %% in the format string is written out as %
See the next page for some examples of printf.

4.5.2 fprintf (fd, str, argl, arg2, •..) into*fd; char *str;

This routine is just like printf except that the first parameter
indicates the channel to be written to.

QC User Manual 41 9992.5 GST 63/1.01

GST Computer Systems Limited
PRINTF EXAMPLE

Standard I/O Runtime Library

Vertical bars have been included in the format string examples to
show the effect of spacing and field width in output using printt'.
They are not mandatory.

if name is the string "fred" and score is an integer 67, then

will print:

printf ("'fos'sscore is %d%%\n", name, score);

fred's score is 67%

format string

I'fad I
l%6dl
l'}'o-6dI
1'f006dl

I%dl
I%ul
I%xl

I%bl
1'}'0060I
1'f004xl

I%cl
1%9cl
1%2xl

I%sl
1%5sl
1%12sl
l'fo-12sI
1%12.4sl

l'fo-9s%o2d/'f002d/'f002dl

QC User Manual

parameter(s) printout

1234
1234
1234
1234

112341
112341
/1234 /
10012341

1-11
14294967295/
Iffffffffl

1100110100101
10023221
104d21

IAI
I
1411

-1
-1
-1

1234
1234
1234

'A'
'A'
'A'

AI

"computer"
"comput.e r"
u compu ter"
"computer"
"computer"

/computer/
Icomputer I
I computer I
Icomputer I
I comp]

IThursday 14/02/851"Thursday",14,2,85

42 9992.5 eST 63/1.01

CST Computer Systems Limited Standard I/O Runtime Library

4.5.3 scanf (str, argl, arg2, ...) char *str;

This routine performs an jnverse function to printf - it reads
text from the standard input and interprets ·it according to the
conversion specifications in str.

The control string str r.ay contain only conversion specifications
and white space (which is ignored).

All the args passed to scanf should be addresses of variables
where the results are placed. (Or, for strings, a buffer pOinter.)

The function returns as its value the number of fields processed -
it will stop early if input data does not match the conversion
specification. If no fields have been read and it reaches end of
file, it will return EOF.

Conversion specifications ar-e similar to printf, but between the %
and the letter you can only put an asterisk (which indicates skip
this field) and/or a decimal number, giving the field width.

Po field is normally a sequence of printing characters, terminated
by a white-space character. A field is also terminated when the
field-width (if specified) has been reached. If the conversion
specification is %c, a single character is read, without skipping
whitespace.

The format specifications are:

b binary integer
c character
d (signed) decimal number
o octal integer
s character string
u unsigned decimal number
x hexadecimal number

See the next page for examples of scanf.

4·5.4 fscanf (fd, str, argl, arg2, ..•) int *fd; char *str;

This routine works just like scanf but the first parameter
indicates which channel to read from.

QC User Manual 43 9992.5 eST 63/1.01

GST Computer Systems Limited Standard I/O Runtime Library

SCANF EXAMPLE

Consider this statement:

scanf ("%s 'foe 'foe %*s
str, &cl, &c2,

'fod %3d 'fod" ,
&il, &i2, &i3)j

If the input contains the following text:

abc defg -12 345678 9

Then the variables will receive these values:

str: "abel! reads a string terminated by space
cl: , , reads the next char
c2: 'd' reads. the next char

the next string is skipped: "efg"
il: -12 reads a number terminated by a non-digit
i2: 345 reads a 3-digit number
i3: 678 reads a number terminated by a non-digit

The next input call will read starting at the space after "345678".

As a further example, this statement:

num ~ scanf (" 'fod %*c 'fod %*c 'fod *%c ", &il, &i2, &i3);

could be used to read numbers terminated with non-digits:

123, 456, 789,

as %d reads up to a non-digit and %*c skips one character.

QC User Manual 44 9992.5 GST 63/1.01

GST Computer Systems Limited

4.6

4.6.~

4.6.2

4.6.3

4.6.4

4.6.5

4.6.6

4.6.7

Standard I/O Runtime Library

Format Conversion Functions

atoi (str) char *strj

Convert (signed) decimal number in str to an integer. Leading
whitespace is skipped. A sign character (+ or -) may optionally
precede the first digit. Conversion stops on the first non-digit.

atoib (str, base) char *str; int basej

Convert (unsigned) number in specified base to an integer. Leading
whitespace is skipped. Bases 2 to ~6 are allowed.
Currently, this routine destroys the contents of the string.

itoa (num, str) int num; char *strj

Convert the number to decimal, left-justified in the string. If
the number is negative, a minus sign is generated. The string is
terminated by a null byte. 32-bit integers can require up to ten
digits (or twelve bytes including sign & null).

itoab (num, str, base) int num; char *strj int basej

Convert the (unsigned) number to a string using the specified
base. Bases 2 to ~6 are allowed. The string is terminated by a
null. Up to 33 bytes can be generated (for base=2).

dtoi (str, num) char *str; int *numj

Convert string from signed decimal, put the result in num. Returns
the no. of digits in the number, or ERR if an error occurred (eg
overflow or no valid digits). The routine does not accept Lead irig
spaces or a plus sign but will accept an optiona~ ~eading minus
sign. -- ..----

otoi (str, num) char *strj int *numj

Convert string from unsigned octal, put the result in num. Returns
no. of digits in the number, or ERR on overflow. It does not skip
leading spaces.

utoi (str, num) char *strj int'*numj

Convert string from unsigned d eci ma.L, put the result in num.
Returns no. of digits, or ERR on overflow. It does not skip
leading spaces.

QC User Manual 45 9992.5 GST 63/l.0~

GST Computer Systems Limited

4.6.8

4.6.9

4.6.10

4.6.11

4.6.12

Standard I/O Runtime Library

xtoi (str, nurn) char *str; int *num;

Convert string from unsigned hex, put the result in num. Returns
no of digits or Em; on overflow. Upper and lowercase letters are
c.ccepted. It does not skip leading spaces.

itod (num, str, size) int num, size; char *str;

Convert
If size
If size
If size
Returns

integer num to signed decimal, right-justified in str.
> 0, size-l bytes are put in str followed by a null byte.
= 0, it searches for a null byte in str.
< 0, -size bytes are put in str, with no null terminator.
str. 1:

itoo (num, str, size) int num, size; char *str;

Convert integer num to octal, otherwise like itod.

itou (num, str, size) int num, size; char *str;

Convert integer num to unsigned decimal, otherwise like itod.

itox (num, str, size) int num, size; char *str;

Convert integer nurn to hex, otherwise like itod. Digits A to Fare
written in uppercase.

QC User Manual 46 9992.5 GST 63/1.01

lIS1ti Computer Systems Limited Standard I/O Runtime Library

4.7 String and Character Handling Functions

4.7.1 1eft (str) char *str

This routine left-adjusts the string. Starting at the first non-
b1ank character, the bytes are moved to the start of the string
up to and including the terminating null byte.

4.7.2 strcat (dest, sour) char *dest, *sourj

The string sour is appended to the string qest which must be big
enough: it is up to the programmer to ensure this.

4.7.3 strncat (dest, sour, n) char *dest, *sourcej int nj

This is like strcat except that n limits the number of characters
which can be taken from sour. It does not fill the buffer with
spaces like strncpy.

4.7.4 strcmp (str1, str2) char *str1, *str2j

This returns an integer value less than, equal to, or greater than
zero, depending on whether the string str1 is less than, equal to,
or greater than str2.

Comparison is based on the ASCII values of the characters in the
strings, but the result is undefined for strings containing bytes
in the range 128 to 255 (Le. with the top bit set) - it will give
the right answer for string equality, but the inequality result is
undefined.

If the strings match up to the length of the shortest one, that
string is considered to be the lesser of the two.

4.7·5 strncmp (str1, str2, n) char *str1, *str2j i.nt nj

This function is like strcmp but a maximum of n characters are
compared.

4.7.6 strcpy (dest, sour) char *dest, *sourj

The string sour is copied to dest. Beware of over1apping strings:
a string can be shuffled to the left using this routine, but not
to the right.

QC User Manual 47 9992.5 GST 63/1.01

GST Computer Systems Limited

4.7.7

4.7.8

4.7.9

4.7.10

4.7.11

4.7.12

4.7.13

Standard 1/0 Runtime Library

strncpy (dest, sour, n) char *dest, *sour; int n;

The string is copied like strcpy, but if it is too short it is
padded to n chars ...•ith spaces and if it is too long it is
truncated to n characters. A null byte is then put at the end.
Overlapping strings should be avoided.

strlen (str) char *str;

This function returns the length of the string (excluding the null
terminator byte).

strchr (str, c) char *str, c;

This searches for the first occurrence of the character c in the
string, and returns a pointer to it. It returns NULL if the
character is not found.

strrchr (str, c) char *str, c;

This searches for the last occurrence of the character c in the
string, and returns a pointer to it. It returns NULL if the
character is not found.

reverse (str) char *str;

This routine reverses the order of the characters in the string.

lexcmp (strl, str2) char *strl, *str2;

This routine compares strings like strcmp except it uses lexorder
to compare characters, rather than using ASCII sequence.

lexorder (cl, c2) char cl, c2;

This routine compares t...•o characters using dictionary order rather
than ASCII order:

Control codes come first

Other non-alpha chars precede all alphabetic chars

Uppercase letters sort immediately before the corresponding
lowercase letters

DEL (copyright) comes last

Top-bit-set characters ~ undefined.

48 9992.5 GST 63/1.01QC User Manual

GST Computer Systems Limited Standard I/O Runtime Library

4.8 Character Classification Functions

4.8.1

4.8.2

4.8.3

'1.8.4

4.8.5

4.8.6

4.8.7

4.8.8

4.8.9

4.8.10

4.8.11

4.8.12

These routines return YES or NO according to whether the char belongs
to the specified class of characters. They do not currently recognise
any of the Sinclair extended character set for foreign alphabets.

isalnum (c) char c;
alphanumeric characters: 0-9 A-Z a-z

isalpha (c) char c;
alphabetic characters: A-Z a-z

isascii (c) char c;
ASCII characters: 0-127

iscntrl (c) char c;
ASCII control codes: 0-31

isdigit (c
digits: 0-9

char c;

isgraph (c) char c;
graphic characters: 33-127 (excludes space)

islower (c) char c;
lowercase letters: a-z

isprint (c) char c;
printing characters: 32-127 (includes space)

ispunct (c) char c;
punctuation characters:
ASCII chars excluding control codes and alphanumerics

isspace (c) char c;
whitespace characters: space and control codes

isupper (c) char c;
uppercase letters: A-Z

isxdigit (c) char c;
hex digits: 0-9 A-F a-f

49QC User Manual 9992.5 GST 63/1.01

GST Computer Systems Limited Standard I/O Runtime Librar~\

4.9 Character Conversion Functions

4.9.1 toascii (c) char C;
Converts c to ASCII (it leaves it unchanged).

4.9.2 tolower (c) char c;
If c is an uppercase letter, return the lowercase equivalent, else
return c.

4.9.3 toupper (c) char c;
If c is a lowercase letter, return the uppercase equivalent, else
return c.

QC User Manual 50 9992.5 GST 63/1.01

~STComputer Systems Limited Standard I/O Runtime Library

4.10 Other System Facilities

These are assorted system facilities which are often provided in a
similar form in other C implementations. System facilities which are
specific to QDOS are listed in section 5.

4.10.1 abs (n) int nj

This returns the absolute value of the integer n.

4.10.2 sign (n) int nj

This returns -1, 0 or +1 according to the sign of n.

4.10·3 fread (buff, size, count, fd) char *buffj int size, count, *fdj

This reads from file f'd into buff, count items size bytes long. It
performs a binary transfer. It returns the actual number of items
read: use feof() or ferrorO to determine if at end of file or if
an error occurred.

4.10.4 fwrite (buff, size, count, fd) char *buff; int size, count, *Cd;

This writes count items size bytes long from buff to file fd. It
performs a binary transfer. It returns the actual number of items
written: use feof() or ferror() to determine if at end of file or
if an error occurred.

4.10.5 read (ra, buff, count) char *buff j int count, *Cd;

This reads count bytes from file fd into buff. It performs a
binary transfer. It returns the actual number of bytes read: use
feof() or ferror() to determine if at end of file or if an error
occurred.

4.10.6 write (fd, buff, count) char *buff; int count, *fd;

This writes count bytes f'r-om buff to file fd. It performs a binary
transfer. It returns the actual number of bytes written: use
f'eof'{} or ferror() to determine if at end of file or if an error
occurred.

4.10.7 calloc (count, size) int count, size;

This allocates count * size bytes of memory, and initialises them
to zero. It returns a pointer to t.he memory, or zero if memory is
exhausted.

QC User Manual 51 9992.5 eST 63/1.01

GST Computer Systems Limited

4.10.8

4.10.9

4.10.10

4.10.11

4.10.12

4.10.13

4.10.14

QC User Manual

Standard I/O Runtime .Library

malloc (count) int count;

This allocates count bytes of uninitialised memory. It returns a
pointer to the memory or zero. if out of memory.

avail (abort) int abort;

This routine returns the amount of free space left between the
program and the stack. If abort is nonzero and the stack has
overwritten the program, the program will be aborted.

free (pointer) char *pointer;
cfree (pointer) char *pointer;

These routines are equivalent. They return memory to the heap
which was grabbed by calls to calloc or malloc. Any record may be
released back to the heap at any time: it is not necessary to
release records in the reverse order of allocation.

The pointer must be a pointer as returned from calloc or malloc
otherwise the system heap may be corrupted: a pointer into a
record allocated from the heap will not work.

getarg (n, str, size, argc, argv)
char *str; int n, size, argc, *argv;

Extract the nth argument from the program's parameter string and
copy it into str (maximum size size). See section 7 for more info
on program parameter strings.

poll (pause) int pause;

This routine looks to see if there are any keystrokes pending for
the program. If pause is zero, any character is returned to the
caller (or zero if there are no chars waiting).

If pause is non zero, and the character is control-S, then th.
program is suspended until the next character is entered on the
keyboard (the character will not be read by the program).

abort (errcode) int errcode;
exit (errcode) int errcode;

These r-out.i.ne s are equivalent. They close all open files and
return to the system. Errcode should be zero (to indicate success)
or a QDOS error code.

ccargcO

This function is called to determine the number of parameters
passed to a user function. See section 3.4.8

52 9992.5 GST 63/1.01

GST Computer Systems Limited Extra QDOS Library Routines

5 Extra QDOS Library Routines

The routines defined in this section are included to allow access to
the facilities of the QDOS operating system. They are unique to QC and
are non-portable.

5.1 Interfacing with QDOS

trapl(regpointer)
trap2(regpointer)
trap3(regpointer)

These three routines allow direct access to almost all of the QDOS
facilities implemented as traps. See the "QDOS Software Developers
Guide", available from Sinclair Research Ltd, for more information on
how to use the traps.

Regpointer is a pointer to an array of 8 integers, arranged as

DO,Dl,D2,D3,AO,Al,A2,A3

all of which are updated with result of the trap.

To access the QDOS channel associated with a QC file fd (defined as
int "fd), use "fd. As an example, here are some routines for
unbuffered 1/0:

I" INKEY
** This routine provides a similar facility to SuperBasic's
** INKEY function: it reads the keyboard directly or
** returns 0 if no key was pressed during the timeout period.
*1
inkey (timeout)

int timeout;

int regs(8];

regs[O]
regs(3]
regs[4]

1; 1* IO.FBYTE *1
timeout;
stderr; 1 Aa = channel to CON *1

trap3(regs);

if (regs(O) == 0)
return (regs(l));

1* if no error, *1
1* return key code *1

else
return (0);

cc user Manual 53 9992.5 GST 63/1.01

GST Computer Systems Limited Extra QDOS Library Routines

I" OUTSCR
** This is a companion routine to INKEY.
** It is used to write characters to the screen avoiding.* QC's buffers.
*1
outscr (ch)

int ch;

int regs [8];

reg s j o]
regs[l]
regs[3]
regs[4]

5; 1* IO.SBYTE"*I
ch; 1* Dl = char to write *1
-1;
stderrj 1 AO = channel to CON *1

trap3(regs l;

ret.urn (regs j O]); 1* return status code, if any *1

QC User Manual 54 9992.5 GST 63/1.01

GST Computer Systems Limited Extra QDOS Library Routines

5.2 Screen and Window functions

All the functions in this section call TRAP 3 to update the screen.
They return QDOS status codes.

In order to change text colour or style within a line, you must call
fflush() to write out the text before the screen driver call.

5·2.1 selvindow(fd)
int *f"dj

This routine is used to select which window to is to be used for
graphics and screen driver routines. The default is the window
connected to stderr.

5·2.2 getvindov (flag ,pointer)
int flag, pointer[)j

This routine is used to enquire the window size and cursor
position. Flag is 0 to get the result in pixel coordinates, or
nonzero to get the result in character coordinates.

Pointer specifies where the results are to be put: it should be an
array of four integers (or a pointer into a bigger array).

pof nt.er j O] gets window width
pointer[l] gets height
pointer[2] gets cursor x position (from left)
pointer[3] gets cursor y position (from top)

5·2·3 border(size,colour)
int size, colourj

This routine is used to update the window border. Size is the
required border width and colour is the required colour.

5.2.4 vindov(width, height, x, y)
int vidth, height, x, Yi

Change window definition. width and height specify the nev window
size. x and y specify the window position. The cursor is reset to
the top left corner of the window (position 0,0).

5·2·5 cursen(switch)
int switch;

This routine turns the cursor on or off, according to the value of
switch: 0 means off, non zero means on.

QC User Manual 55 9992.5 GST 63/1.01

GST Computer Systems Limited

5.2.6

5.2·7

5.2.8

5·2·9

5·2.10

5·2.11

5·2.12

5·2.13

5.2.14

Extra QDOS Library Routines

at(line,col)
int line, col;

This routine positions the cursor at the specified line and
character position within the window.

tab (col)
int col;

This routine positions the cursor at the specified column number.

nextUne()

This routine moves the CurSor to the start of the next line.

curleft()

This routine moves the cursor left one space.

curright()

This routine moves the cursor right one space.

curup()

This moves the cursor to the next row up.

curdown()

This moves the cursor to the next row down.

cursor(xpos,ypos)
int xpos, ypos;

This moves the cursor to the specified (pixel addressed) position.

scroll (distance, part)
int distance, part;

The window (or part of it) is scrolled vertically by the specified
amount. A positive distance moves the text down on the screen.
Part is interpreted as follows:

part=O
part=l
part=2

Scroll window
Scroll top of window (lines above cursor line)
Scroll bottom of window (lines below cursor line)

56 9992.5 GST 63/1.01QC User Manual

GST Computer Systems Limited

5·2.15

5.2.16

5·2.17

5.2.18

5.2.19

Extra QDOS Library Routines

pan (distance ,part)
int distance, part;

The window (or part of it) is scrolled horizontally by the
specified amount. A positive distance scrolls the text to the
right. Part is interpreted as follows:

part~O
part~3
part~4

Pan whole window
Pan whole cursor line
Pan cursor line (from cursor to end of line)

c1s(part)
int part;

The window (or part of it) is cleared to the current paper colour.
Part is interpreted as follows:

part~O
part~l
part~2
part~3
part~4

Clear window
Clear top of window (above cursor line)
Clear bottom of window (below cursor line)
Clear whole cursor line
Clear cursor line (from cursor to end of line)

fount(fountl,fount2)
char *fountl, *fount2;

This routine is used to select the character fount for the window.
A zero fount address selects the default fount. See QDOS
documentation for details of the fount data structure. If a
character to be written is not defined in fountl then fount2 will
be checked.

recol(table)
char *table;

This routine recolours a window. Table is an array of eight bytes
(chars) giving the new colour (0-7) for each of the colours
currently displayed on the screen. (Order is O~black, l=blue,
2~red, 3~magenta, 4~green, 5=cyan, 6~yellow, 7=white.)

paper (colour)
int colour;

Set paper colour. The paper colour is used when clearing the
screen, and is also used to fill the space left behind by scroll
and pan.

QC User M3.nual 57 9992.5 eST 63/1.01

GST Computer Systems Limited

5·2.20

5·2.21

5·2.22

5·2.23

5.2.24

5·2.25

5.2.26

Extra QDOS Library Routines

strip (colour) int colour;

Set strip colour. The strip colour is used as the background
colour "hen text is written to the screen (Unless it is being
vr it ten as transparent text). The strip colour is often set to the
same as the paper colour.

ink(colour) int colour;

Set ink colour. This is used for text and graphics (except "hen
"riting in XOR mode).

flash(switch) int switch;

Set or unset flash mode. Nonzero switch turns on flashing, zero
s"itch turns it off. Flashing only works if the machine is in 8
colour mode.

under(switch) int switch;

Set underlining on or off according to the value of switch.

over-Lsvt tch) int switch;

Set "riting
switch
switch
switch

and plotting mode:
-1 XOR mode
o character background
+1 transparent mode

is strip colour

csize(width,height) int width, height;

Character size and
width = 0

1
2
3

spacing:
6 pixels spacing
6 pixels on 8 pixels spacing
12 pixels "ide
12 pixels on 16 pixels spacing

height = 0 for single height, 1 for double height

block(width,height,xpos,ypos, colour)
int width, height, xpos, ypos, colour;

Fill a rectangle (specified in pixel coordinates) in the specified
colour.

QC User Manual 58 9992.5 GST 63/1.01

GST Computer Systems Limited Extra QDOS Library Routines

5.3 Graphics Routines

In these graphics routines, all coordinates are in graphics units which
are scaled to fit the window. Angles are specified in hundredths of
radians as QC does not support floating point.

The ellipse eccentricity should also be passed as one hundred times the
required number.

The graphics are drawn in the window selected by the selvindov routine
(5.2.1) using the ink colour selected by ink (5.2.21).

Note that graphics coordinates have the orlgln at the bottom left,
unlike pixel coordinates which have the origin at the top left.

5.3.1 point(x,y)
int x, y;

5·3·2 line(xl,yl,x2,y2)
int xl, yl, x2, y2,

5.3·3 arc(xl,yl,x2,y2,angle)
int xl, yl, x2, y2, angle;

The arc is drawn between the two end points. The sense of the arc
depends on the sign of the angle: if +ve, the curve is drawn in an
anticlockwise direction.

5.3.4 circle(xpos, ypos, radius)
int xpos, ypos, radius;

This routine draws a circle,
ellipse ,routine. A circle is
eccentricity of 1:

which is a special case of the
equivalent to an ellipse with

circle(xpos, ypos, radius)
int xpos, ypos, radius;

ellipse (xpos, ypos, radius, 100, 0);

5.3·5 ellipse (xpos , ypos, radius, eccentricity, angle)
int xpos, ypos, radius, eccentricity, angle;

The radius specifies one of the ellipse radii. The other radius is
specified by radius times eccentricity. Note that the eccentricity
parameter is scaled by 100, so a value of 100 produces a circle.

QC User Manual 59 9992.5 GST 63/1.01

GST Computer Systems Limited Extra QDOS Library Routines

5.3.6 scale(scalefactor,xorg,yorg)
int scalefactor, xorg, yorg;

The scale is adjusted so that the height of the window is
equivalent to scalefactor graphics units. xorg and yorg give the
internal graphics coordinates of the bottom left hand corner of
the window. The default scale is 100, and the default origin is
0,0.

5·3.7 gcursor(xorg, yorg, right, down)
int xorg, yorg, right, down;

The cursor position is taken from xorg and yorg in graphics
coordinates plus an offset right and down in pixel coordinates.

5.3.8 fill (switch)
int switch;

Area fill is turned on or off according to the value of switch.

/

QC User Manual 60 9992.5 aST 63/1.01

GST Computer Systems Limited Extra QDOS Library Routines

5.4 Other QDOS Facilities

5.4.1 delay (ticks) int ticks;

Delay for a short period. A tick is one fiftieth of a second.

5.4.2 adate(seconds) int seconds;

Adjust the clock forwards or backwards by a number of seconds.
Returns the clock value in seconds from the first of January 1961.

5.4.3 qdosdateO

Returns the clock value.

5.4.4 date(clock,datevec)
int clock; int datevec[]j

Converts clock to a formatted date: datevec should be a pointer to
an array of 7 integers arranged as: .

datevec[O]
dat.evecj L]
dat.evecj P]
datevec[3]
datevec[4]
datevecj s]
datevec[6]

year
month
day in month
weekday (O=Sunday, l=Monday, .. 6=Saturday)
hour
minute
second

5.4.5 sdate(value)
int value;

Set the clock.

5.4.6 beep (duration, pitch)
int duration, pitch;

This routine provides a simple interface to the QL sound
generator. Duration is the period in units of 72 microseconds.
(14000 is therefore about one second.) The lower the pitch number,
the higher the tone produced.

An even simpler way to drive the QL sound generator is provided in
the main library: writing a control-G to the screen will generate
a short beep.

Note that this routine (and the one below) return immediately. To
wait for the beep to finish, call delay. The time to delay is
approx duration/256 ticks.'

QC User Manual 61 9992.5 GST 63/1.01

GST Computer Systems Limited

5.4.7

5.4.8

5.4·9

5.4.10

Extra QDOS Library Routines

varble(duration,pitchl,pitch2,interval,step,vrap,fuzz,rand)
int duration, pitchl, pitch2, interval,

step, wrap, fuzz, rand;

This routine gives the user full control over the sound generator.
See the Super3asic manual for more information on the various
parameters.

keyrov(roll)
int rov;

This reads the QL keyboard directly.
two or more keys are pressed.
documentation for more details. Bits
which keys in that row are held down.

random ()

Returns a random integer.

rnd(min,max)
int min, ma..x;

It can be used to tell when
See QDOS and SuperBasic

set in the result indicate

Returns a random integer in the specified range.

QC User Manual 62 9992.5 GST 63/1.01

GST Computer Systems Limited Extra QDOS Library Routines

5.4.11 readdir(fd, fname, dirinfo
int *Id, *dirinfoi
char *fname i

This routine is used to read the contents of a directory. fd
should be the result of a call to f'open with option ~ "d". f'na.me
is a pointer to an array of characters big enough for a filename
(37 characters is enough) and dirinfo is a pointer to an array of
eight integers.

The routine returns zero normally, or EOF at the end of the
directory. Pn example of the use of this routine:

main()
(int dirinfo{8); char· filename[40); int *fd;

fd ~ fopen ("mdvl ", "d")i
while (readdir (rd, filename, dirinfo)~~O)
I printf (....
)

The information in the directory entry is put into the array as
follows:

dirinfo[O] file size
dirinfo[l] key
dirinfo[2) file type
dirinfo[3] type dependent information
dirinfo[4]
dirinfo[5) date of last update
dirinfo(6) date of last access
dirinfo(7) date of last backup

Read the QDOS documentation for more information on the
information held in a directory. Note that not all of these
information fields are implemented on all device drivers.

5.4.12 exec (progname, optstr, flag)
char *progname, *optstri int flag;

This routine allows you to run another program. progname is the
name of the program to run and optstr is passed to the program as
a parameter string. If flag is zero, the routine returns
immediately after the subprogram was started. If nonzero, the
routine waits for the subprogram to finish.

A QDOS status code is returned by this routine. If the routine
waits for the subprogram to finish, the status code returned by
that program is returned by this routine.

QC User Manual 63 9992.5 eST 63/1.01

GST Computer Systems Limited Interfacing with Assembler Code

6 Interfacing with Assembler Code

6.1 Register Usage

The 68000 registers are used by QC as follows:

DO,DI Hold temporary values for arithmetic calculations.

D2 The number of parameters passed to a routine.

03,04,D5 Not used.

06 Always holds the value 1.

07 Always holds the value O.

Aa The "primary register", holds the current value of the
expression being evaluated. Holds the result of a function
when returned to caller.

Al The "secondary register", used when evaluating expressions
and often holds the address of a variable being updated in an
assignment.

A2,A3 Not used

A4 Points to the "middle" of the program. All functions are
accessed via an offset from pointer A4.

A5 Points to the base of the global variables. All global
variables are accessed using an offset from this register.

A6 The "stack frame pointer" points at the current function's
local variables on the stack.

A7 The stack pointer points at the "top" of stack. (On the
68000, the stack grows down from high memory.)

If you write assembly code to be interfaced with QC, you are free to
use any register, but the following registers must be restored when you
return to QC code: D6, D7, A4, A5, A6, A7

QC User Manual 64 9992.5 GST 63/l.01

GST Computer Systems Limited Interfacing with Assembler Code

6.2 The Memory Map of a QC Program

High addresses are at the top of the diagram.

LINKER SECTION
I I
I I
I stack 1<------------- A6
I I
I 1<------------- A71- - - - - - - - - -I
I spare stack space I
I I
I I

S.TRAILER 11
S.RELOC 1 1

1 1
1 runtime library 1

1 1
1 11- - - - - - - - - -I
1 program 1<------------- A4
1 area I

1 1
1 1
1 1

S.CCODE

1 1
1 globals 1
I 1
1 1<------------- A5

S.HEADER 1 init. code 1
1 1

S.GLOB

Sections S.HEADER, S.TRAILER and S.RELOC should not be used by the
assembler programmer: all code should be put into section S.CCODE along
with code generated by the compiler. The location potnt ed to by A4 is
referenced by the symbol M$ so functions can be referenced as follows:

JSR func-M$(A4)

Using this mechanism, any function within 32k of A4 can be accessed in
a position-independent manner, allowing QC programs of up to around 64k
in size. (M$ is actually defined to be 32k from the base of the
program.)

Global variables can be declared in assembler code by switching to
section S.GLOB and using DC.L or DC.B to declare variables and their
initial values. The location pointed to by A5 is referenced by the
symbol G$ so other global variables can be referenced as follows:

MOVE.L
MOVE.B

globname-G$(A5) ,DO
Dl,globchar-G$(A5)

QC User Manual 65 9992.5 GST 63/1.01

CST Computer Systems Limited Interfacing with Assembler Code

6.3 QCStack Structure

QC uses the 68000 instructions LINK and UNLKto maintain a stack frame
structure: on entry to a function, the function parameters have been
pushed onto the stack by the caller. The function uses a LINK
instruction to reserve space for local variables declared at the outer
level of the function. The stack then looks like this (high addresses
at the top of the, diagram):

_______ 1

1
1
1
1
1

- 1

1
RETURNADDRESS1

1
LINKWORD 1<------------- A6

1

1

1
1
1

_______ 1 <------------- A7
1

function
parameters

space for
local
variables

The function parameters are accessed using positive offsets from A6,
and the local variables are accessed using negative offsets. If a block
within a function declares local variables, another LINKinstruction is
not generated: the stack pointer (A7) is just modified.

At the end of the function, UNLKis used to restore the stack to its
state before the LINK, then RTS to return to the caller. Parameters are
removed from the stack by the caller.

All parameters are passed to functions as ints, i.e. 32-bit longwords.
They are pushed onto the stack in the order they are declared, so the
first parameter is furthest from A6 and the last parameter is at
address 8(A6).

Amongst the local variables, int and pointer variables occupy 4 bytes
and are word aligned. Short takes 2 bytes. Character variables occupy
just one byte - gaps may be left between variables if you have a
mixture of char and into

If in doubt about how to access local variables in an assembly code
insert in QC code, look at the output from the compiler.

The simplest way to use assembly code m'se r t.s is to use the fact that
the compiler leaves the result of an expression in the register AO
which can then be used in your assembler code. If assembly code appears'
at the end of a function, the value you leave in AOwill be the result
of the function.

QCUser Manual 66 9992.5 GST63/1.01

SS,Computer Systems Limited Interfacing with Assembler Code

6.4 Example of a Code Insert

This example is taken from the graphics module in the library. It uses
the QDOS floating point routines to manipulate real numbers on a
floating point stack. fp_tas is a pointer into the array fp_stack.

char fp_stack[300J, *fp_tos;
/* FP DIVIDE.,.* Divide the "next on stack" by the "top of stack"
*/

fp divide(){ -
#asm

fp_tos; /* get the floating point stack pointer into AO */

MOVE.L
MOVE.L
SUB.L
MOVEQ
MOVE.L
JSR
MOVE.L

#endasm

AO,AI
A6,-(Sp)
A6,A6
#$10,00
$llC,A2
(A2)
(SP)+,A6

get fp stack pointer in Al
save C's A6
set A6 to zero for QDOS
QDOS code for divide
get address of FP routine
call QDOS floating point
restore C's A6

fp_tos += 6; /* update our copy of stack pointer */

QC User Manual 67 9992.5 GST 63/1.01

GST Computer Systems Limited The CommandLine and I/O Redirection

7 The CommandLine and I/O Redirection

If you have the QL Toolkit, or if you start programs with the library
routine e xe c , it is possible to pass information to a program when you
execute it. You can also redirect the standard input and standard
output channels.

7.1 Passing a CommandLine to a Program

Using EX, EW or ET you can pass o. text string to a. QC program started
from SuperBASIC. See the QL Toolkit documentation for full details. The
command looks like this:

EX <programname> ; <string>

where <string> should be a SuperBASIC string expression.

The command line string will be parsed by the QC startup code, so that
the words in the command line can be processed individually. (It looks
for sequences of non-space characters separated b)' one or more spaces.)

7.2 Redirecting I/O Channels

If data filenames are included in the EX command line, the first
datafile will be taken as the program's standard input, and the last
one will be used as the standard output (but if pipes have been set up
these will be used instead).

Examples:

EX QC,MYFILE_C,MYFILE_ASM

This runs the compiler which reads from MYFILE C on the
default data device and writes to MYFILEASM on the program
device. Note that filenames here can have the device name
omitted, as it is appended by the toolkit, but the extensions
must be defined explicitly.

EX MYPROG_BIN,DATPYILE

This runs the program which reads from file DATAFILE, but
standard output still goes to the screen.

EX ~lYPROG_BIN, DATAFILE,AFILE TO ANOTHERPROG

In this case program MYPROGreads from DATAFILE, ignores and
sends its output down a pipe to ANOTHERPROGwhich can be
another QC program. (See the QL Toolkit documentation)

QC User Manual 68 9992.5 GST 63/1.01

GST comp~ter SystemsLimited The Command Line and I/O Redirection

For compatibility with other operating systems, the UNIX-like
convention using angle brackets can also be used for I/O redirection.

If the following forms appear in the EX option string they wiLl,
override any other I/O redirection. No spaces are allowed between the
angle bracket characters and the filenames here.

<filename open the file as standard input

>filename open the file as standard output

»filename open the file as standard output, but append the
text to the end of the file.

)
Redirection specifications like these are not passed to the user
program as parameters: see below.

7.3 Interpreting the Command Line Within a Program

To use the command line passed from SuperBASIC, the main function in
the program should be declared as follows:

main (argc, argv)
int argc, *argv[l;

argc is the number of arguments passed to the program (plus one for the
program name), and argv is a pointer to an array of pointers to the
argument strings.

If, for example, a program is started with the following command:

EX PROG;" <MDV2_DATAFILE ABC »MDVIJILENAME def 99 Q"

argc will have the value 5 and argv will point to an array like this:

argv -------> I 1-------> "*"
: 1-------> "ABC"
____ 1--------> "def"!

1-------> "99"
___ 1-------> "Q"

1 1
undefined

Note that argv[O] points to a string containing an asterisk. This is
set up as a pointer to the program name on operating systems which
support this.

QC User Manual 69 9992.5 GST 63/1.01

GST Computer Systems Limited The Command Line and I/O Redirection

The library routine getarg can be used to access parameters in this
data structure. It is defined as follolols:

getarg (n, str, size, argc, argv,)
char *str;
int n, size, argc) *argv;

The routine copies the nth parameter into the string str, and it will
be truncated to size bytes if it is too big. argc and argv should be
passed as received from the operating system, eg:

main (argc, argv)
int argc, *argv;

char buff [20 I;

getarg (2, buff, 20, argc, argv);

getarg returns EOF and puts a null byte in str if it reaches the end of
the argument list.

QC User Manual 70 9992.5 GST 63/1.01

GST Computer Systems Limited Compiler Error Messages

APPENDIX A

Compiler Error Messages

When the compiler detects errors in the code, it prints an error
message on the screen and to the listing file (if a listing is being
produced) •

Error messages to the screen consist of the line in which the error ~as
detected, followed by a line with a pointer indicating where in the
line the error was detected f'o Ll.ove d by a me ss a.ge,

If option -A was selected, the compiler will bleep to draw your
attention. If option -P was selected, the compiler will pause and wait
for you to type ENTER before proceeding.

At the end of the compilation, the compiler will print a list of any
undefined symbols on the screen and to the listing file. The list is in
two parts: first any undeclared names which have been used as function
names are listed: these are assumed to be external functions. This is
followed by a list of undeclared names which have not been used as
function names. These are assumed to be undefined globals, and are
treated as an error.

The compiler error messages are listed below in alphabetical order
together with explanations.

already defined

The symbol has already been used. You can create a local variable with
the same name as a global variable or a local in another block, but you
cannot have two global variables with the same name or two local
variables in the same block with the same name.

bad label

The label name is invalid or miSSing.

can't subscript

You cannot subscript something which is not a pointer or an array.

QC User Manual 71 9992.5 GST 63/1.01

GST Computer Systems Limited Compiler Error Nessages

cannot assign to pointer

Pointers cannot be initialised, except character poi.nt ers which can be
initialised with a string constant.

cannot assign

An attempt was made to assign to something which is not an <lvalue>.
(This error message is also produced if the increment or decrement
operators are used on something which is not an <lvalue>.) An <lvalue>
is something which can validly a p p e a'r- on the left side of an
assignment: typically a variable or a subscripted array or r
indirected pointer.

cannot initialise local arrays

Global arrays can be initialised, but local arrays cannot.

error opening file

An error occurred opening one of the files named in the command line.
This is a fatal error.

expression too complicated

The compiler can handle most expressions with up to 12 levels of
brackets. If you get this error, simplify the expression or break it
into several smaller expressions and use some temporary variables.

failed to open include file

An error occurred when attempting to open an include file. The compiler
will carry on after this error.

function body must be a compound statement

QC requires a function body to be a compound statement: other statement
types are not allowed.

global symbol table overflo~

There are too many global symbols for the compiler's symbol tables.
There is room for around 200 global symbols. If you get this error, try
breaking the program down into smaller and simpler modules.

QC User Manual "(2 9992.5 GST 63/1.01

CST Computer Systems Limited Compiler Error Messages

illegal address

The address operator & was used on something which does not have an
address.

illegal argument name

There is some syntax error in the function argument name (eg it is a
reserved word).

illegal array size

Negati ve array sizes are illegal.

illegal function or declaration

This is a syntax error at the level of defining functions or global
variables: the compiler cannot make sense of the declaration.

illegal symbol

The symbol naffiecontains invalid characters or is a reserved word.

invalid expression

An expression term is invalid. Valid terms are constants, variables, or
string constants. Label names and reserved words are invalid.

line too long

After the preprocessor has perf'orraed macro substitutions, the line has
exceeded 128 characters. You should simplify the line or break it over
several lines.

literal queue overflow

There are too many string constants in a function, or they are too
long. The compiler saves the string constants until the end of the
function. There is room for about 800 characters. If you get this
error, break the function into smaller functions.

QC User Manual 73 9992.5 GST 63/1.01

GST Computer Systems Limited Compiler Error Messages

local symbol table overflow

lhere are too many local symbols in the function for the compiler's
local symbol table. Break the function into smaller functions.

locals not allowed in switch

Local variables are not al1o~ed in the block controlled by a switch
statement.

locals not allowed with goto

Local variables are not al.Loved in a block if the function has any go to
statements.

macro name table full

'I'her-e are too many macro names for the compiler's macro symbol table.
If you get this error, you should break the program into several
smaller modules. There is room for around 100 macro names.

macro string queue full

The space reserved for macro definitions has overflo~ed. Break the
program into smaller modules.

missing final closing bracket

End of file ~as reached ~hile still inside a function.

missing token:

Some syntax element (eg a close bracket or a comma) vas expected but
not found. The error message sho~s ~hich character ~as expected.

multiple defaults

Only one default label is allo~ed in a switch statement.

must assign to char pointer or array

Only char pointers or char arrays can be initialised ~ith string
constants. Simple char variables cannot be initialised in this way.

QC User Manual 74 9992.5 GST 63/1.01

GST Computer Systems Limited Compiler Error Messages

must be constant expression

A variable expression was used where a constant expression is required
(eg when defining the size of an array or when initialising variables.)

must declare locals at start of block

Local variables must be declared before a~y statements within a block.

no apostrophe

A string constant does not have a terminating apostrophe or single
quote character.

no final }

End of file was reached within a compound statement.

no matching 'if •••

A preprocessor directive Helse or Rendif does not have a matching
'ifdef or Hifndef directive.

no quote

A string constant is not terminated properly. String constants may not
be split onto multiple lines.

no semicolon

A semicolon is missing from the end of a statement. This message
commonly appears at the start of the following statement.

not a label

The name after the gato is already defined as something other than a
label.

not allowed with block locals

A goto statement is not allowed in a function which has local variables
in a block below the level of the main function block.

QC User Manual 75 9992.5 GST 63/1.01

GST Computer Systems Limited Compiler Error Messages

not an argument

A name is defined in the declarations in a function header whi ch is not
one of the arguments of the function.

not in switch

A default or case label may not appear outside of a switch statement.

only allowed in a loop

A continue statement can only be used ~ithin ~ loop. A break statement
can be used in a loop or a switch statement.

output error

An error occurred vhen vr-iting out to ':he output file or listing file.
This normally means that the microdrive tape or floppy disk is full.
This is a fatal error.

staging buffer overflow

The output buffer (used for peephole optimisation) has ove rf'Lowed, This
only happens on complicated statements and expressions. If you get
this, simplify your code.

too many cases

There are too many cases in the s~itch statement for the compiler's
s~itch table. The limit is 60 cases.

too many nested loops

There are too many nested loops - the compiler keeps track of them to
handle continue and while statements. The limit is 30 loops. If you get
this, simplify the code or break it up into more functions.

wrong number of arguments

The argument declarations in the function header do not match the
arguments listed for the function.

QC User Manual 76 9992.5 GST 63/1.01

GST Computer Systems Limited Summary of Library Routines

APPENDIX B

Summary of Library Routines

This appendix contains a sorted list of the library functions. A
summary of function parameters is included for quick reference. The
section number where the function is specllied is given on the right.

abort
abs
adate
arc
at
atoi
atoib
avail

beep
block
border

calloc
ccargc
cfree
circle
clearerr
cls
csize
curdown
curleft
cur right
curs en
cursor
curup

date
delay
delete
dtoi

ellipse
exec
exit

fclose
feof
ferror
fflush
fgetc
fgets
fill
flash
[open
fount
fprintf
fputc

cc User M3.nual

(errcode) int errcode;
(n) int n;
(seconds) int seconds;
(xl,yl,x2,y2,angle) int xl,yl,x2,y2,angle;
(line,col) int line,col;
(str) char *str;
(str,base) char *strj int base;
(abort) int abort;

(duration,pitch) int duration,pitch;
(width,height,x,y,col) int width,height,x,y,col;
(size,colour) int size,colour;

(count,size) int count,size;
()
(pointer) char *pointerj
(xpos,ypos,radius) int xpos,ypos,radius;
(ra) int *fdj
(part) int part;
(width,height) int width,height;
()
Cl
()
(switch) int switch;
(xpos,ypos) int xpos,ypos;
Cl

(clock,datevec) int clock,datevec[J;
(ticks) int ticks;
(name) char "name
(str,nuln) char *str; int *num;

(x,y,radius,ecc,angle) int x,y,radius,ecc,angle;
(progname,optstr,flag) char *progname,*optstr; int flag;
(errcode) int errcode;

(fd) int "fd;
(fd) int *fd;
(fd) int "fd;
(fd) int "fd;
(fd) int *fd;
(str,size,fd) char *strj int size,fdj
(switch) int switch;
(switch) iot switch;
(name, mode) char *r.ame,*mode j
(fouotl,fount2) char *fountl,*fount2;
(fd,str,argl,arg2, ...) int *fd; char *str;
(c,fd) char Cj iot *fd;

77

4.10.13
4.10.1
5.4.2
5·3·3
5.2.6
4.6.1
4.6.2
4.10.9

5.4.6
5·2.26
5·2·3

4.10.7
4.10.14
4.10.10
5.3.4
4.3.15
5.2.16
5·2.25
5·2.12
5·2.9
5·2.10
5·2·5
5·2.13
5·2.11

5.4.4
5.4.1
4.3.12
4.6.5

5.3·5
5.4.12
4.10.13

4.3· 3
4.3·13
4.3.14
4.3.9
4.3.4
4.3.6
5.3.8
5·2.22
4.3.1
5·2.17
4.5.2
4.3·7

9992.5 GST 63/1.01

GST Computer Systems Limited

fputs
fread
free
freopen
fscanf
fwrite

gcursor
getarg
getc
getchar
getpos
getwindow

ink
isalnum
isalpha
isascii
isatty
iscntrl
iscons
isdigit
isgraph
islower
isprint
ispunct
isspace
isupper
isxdigit
itoa
itoab
Hod
itoo
itou
itox

keyrow

left
lexcmp
lexorder
line
lseek

malloc

nextline

otoi
over

pan
paper
point
poll
printf
putc

QC User Manual

Su~nary of Library Routines

(str,fd) char *str; int *fd;
(buff,size,count,fd) char *buff; int size, count, *fd;
(pointer) char "pointer;
(name,mode,fd) char *name,*mode; int *fd;
(fd,str,argl,arg2, ...) int *fd; char *str;
(buff,size,count,fd) char *buff; int size,count,*fd;

(xorg,yorg,right,down) int xorg,yorg,right,down;
(n,str,size,argc,argv) char *str;int n,size,argc,*argv;
(f'd) int *fd;
()
(fd) int *fd;
(flag,pointer) int flag,pointer[];

(colour) int colour;
(c) char c ;
(c) char c;
(c) char c;
(fd) int *fd;
(c) char c;
(f'd) int *fd;
(c) char c;
(c) char c;
(c) char c;
(c) char c;
(c) char c;
(c) char c ;
(c) char c ;
(c) char c;
(num,str) int num; char *str;
(num,str,base) int num; char *str; int base;
(num,str,size) int num,size; char *str;
(num,str,size) int num,size; char *str;
(num,str,size) int num,size; char *str;
(num,str,size) int num,size; char *str;

(row) int row;

(str) char *str
(strl,str2) char *strl,*str2;
(cl,c2) char cl,c2;
(xl,yl,x2,y2) int xl,yl,x2,y2;
(fd,offset,from) int *fd,offset,from;

(count) int count;

()

(str,num) char *str; int *num;
(switch) int switch;

(distance,part) int distance,part;
(colour) int colour;
(x,y) int x,y; 0
(pause) int pause;
(str,argl,arg2,) char *str;
(c,fd) char c; int *fd;

78

4.3.8
4.10.3
4.10.10
4.3.2
4.5.4
4.10.4

5·3·7
4.10.11
4.3.4
4.2.1
4.4..2
5·2.2

5·2.21
4.8.1
4.8.2
4.8.3
4.3.10
4.8.4
4.3.11
4.8.5
4.8.6
4.8.1
4.8.8
4.8.9
4.8.10
4.8.11
4.8.12
4.6.3
4.6.4
4.6.9
4.6.10
4.6.11
4.6.12

5·4.8

4·1.1
4.1.12
4.1.13
5·3·2
4.4.3

4.10.8

5.2.8

4.6.6
5.2.24

5·2.15
5·2.19
5·3.1
4.10.12
4.5.1
4.3.1

9992.5 GST63(1.01

GST Computer Systems Limited

putchar
puts

qdosdate

random
read
readdir
recol
reverse
rewind
rnd

scale
scanf
scroll
sdate
selwindow
sign
strcat
strchr
strcmp
strcpy
strip
strlen
strncat
strncmp
strncpy
strrchr

tab
toascii
to lower
toupper
trapl
trap2
trap 3

under
ungetc
unlink
utoi

warble
window
write

xtoi

QC User Manual

Summary of Library Routines

(c) int c;
(str) char *str;

()

()
(fd,buff,count) char *buff; int count,*fd;
(fd,fname,dirinfo) char *fname; int *fd, *dirinfo;
(table) char *table;
(str) char *str;
(fd) int *fd;
(min,max) int min,max;

(scale,xorg,yorg) int scale,xorg,yorg;
(str,argl,arg2, ...) char *str; .
(distance, part) int distance, part;
(value) int value;
(fd) int *fd;
(n) int n;
(dest,sour) char *dest,*sour;
(str,c) char *str,c;
(strl,str2) char *strl,*str2;
(dest,sour) char *dest,*sour;
(colour) int colour; .
(str) char *str;
(dest,sour,n) char *dest,*sourcej int n;
(strl,str2,n) char *strl,*str2j int nj

(dest,sour,n) char *dest,*sour; int nj

(str,c) char *str,cj

(col) int col;
(c) char c;

. (c) char c;
(c) char c;
(regpointer) int *regpointer;
(regpointer) int *regpointerj
(regpointer) int *regpointer;

(switch) int switch;
(c,fd) char c; int *fdj
(name) char *name
(str,num) char *str; int *num;

(duration,pitchl,pitch2,interval,step,wrap,fuzz,rand)
(width,height,x,y) int width,height,x,y;
(fd,buff,count) char *buffi int count,*fd;

(str,num) char *str; int *numj

4.2.2
4.2.3

5.4.3

5.4.9
4.10.5
5.4.l1
5.2.l8
4.7.l1
4.4.l
5.4.l0

5.3.6
4.5.3
5.2.l4
5.4.5
5·2.l
4.10.2
4.7.2
4.7.9
4.7.4
4.7.6
5·2.20
4.7.8
4.7.3
4.7.5
4.7.7
4.7.l0

5·2·74.9.l
4.9.2
4.9.3
5.1
5·1
5.1

·5·2.23
4.3.5
4.3.l2
4.6.7

5.4.7
5.2.4
4.10.6

4.6.8

'(9 9992.5 GST 63/1.01

GST Computer Systems Limited Summaryof Compiler, Assembler and Linker Options

APPENDIX C

SUMMARY OF COMPILER, ASSEMBLER AND LINKER OPrIONS

Summaries of assembler and linker options are included here for easy
reference, but they are not intended as a substitute for the relevant
user manuals.

C.I Compiler Options

All filenames given to the compiler in the commandline (unless part of
an option) are input files which are read in the order specified.

Compiler options are single letters preceded by a dash. Some of them
take an parameter filename.

-M monitor: write the first line of each function to the
screen as it is compiled.

-A alarm: the compiler will bleep vherieve r- it prints an
error message to the screen.

-p pause: after printing an error message to the screen,
the compiler will wait for you to press the ENTER key
before continuing.

-C comments: the C code is included in the output file as
comments.

-D cdi r » directory: the specified directory is searched for
include files. Any device or directory name can be
specified here. Note the parameter is mandatory in this
command.

-L <name>listing: compiler listing output is sent to the
named file or device.

QCUser M3.nual 80 9992.5GST 63/~·01

eST Computer Systems Limited Summary of Compiler, Assembler and Linker Options

C.2 Assembler Options

The assembler command line is in two parts. First come a number of
"positional" parameters: the meaning of each parameter depends on its
position within the list. There are one to three positional parameters,
all filenames. These are followed by the options. An option is a word
starting with a dash, and may be followed by a filename parameter.

The positional parameters are:

first
second (optional)
third (optional)

source filename
listing filename
binary filename

The options are:

-NOLIST Do not produce a listing file.

-ERRORS <filename> Only send er-ror messages and erroneous lines
to the named file. This option sets the -NOSY M
option.

-LIST <filename> Send a listing to the named file.

-NOBIN Do not produce any relocatable binary output.

-BIN <filename> Send relocatable binary output to the named
file.

-NOSYM Do not produce any symbol table or cross
reference.

-SYM Produce a symbol table and cross reference.

-NOLINK Produce absolute binary instead of relocatable
binary.

The filenames specified in the options are all optional, but if
specified they override the positional filenames. If a filename is not
specified in either place, a default file name will be built from the
source filename, with extension LIST for listing files and REL for
relocatable binary files.

By default, the QC assembler does not produce a listing file. If a
listing file is selected, a symbol table will be included by default.

QC User Manual 81 9992.5 eST 63/1.01

eST Computer Systems Limited Summary of Compiler, Assembler and Linker Options

C.} Linker Options

The linker command line is in two parts, like the assembler command
line. First come E. number of "posi tional" parameters: the meaning of
each parameter depends 'on its position within the list. There are up to
four positional parameters, all filenames. These are followed by the
options. An option is a word starting with a dash, and may be followed
by a filename parameter.

The positional parameters are:

first
second
third
fourth

relocatable binary file name
linker control file name
listing file name
program file name

The options are:

-WITH <filename> This identifies the control file name if no
relocatable binary file is named in the
positional parameters.

-NOPROG Do not produce a program file.

-PROG <filename> Gep.erate a program file.

-NO LIST Do not produce a listing file.

-LIST <filename> Send a listing to the named file.

-NODEBUG Do not generate a debug file.

-DEBUG <filenE.me> Generate a debug file.

-NOSYM Do not produce any symbol table or cross
reference.

-SYM Produce a symbol table.

-CRF Produce a cross reference.

-PAGELEN <number> Specifies number of lines per page in listing.

The filenames specified in the options are all optional, but if
specified they override the positional filenames. If a filename is not
specified in either place, a default file name will be built from the
source filename, with extension MAP for listing files DEBUG for debug
files and BIN for program files-: -

QC User Manual 82 9992.5 GST 63/1.01

GST Computer Systems u. ~tween QC and Standard C

APPENDIX D

DIFFERENCES BETWEEN QC AND STANDARD C

This appendix gives a brief summary of the differences between the QC
language and the de facto C standard as defined in appendix A of "The C
Programming Language" by Kernighan & Ritchie.

Main Differences:

Floating point and structures and all language features relating to
these types (unions, bitfields, typedef) are not implemented.

The type returned by a function in QC is always int, and cannot be
specified otherwise.

Multi-dimensional arrays are not implemented in QC.

Other Differences: (Numbered according to K & R)

2.2 Identifiers:

External identifiers may not start with an underscore, and all 8
characters are converted to uppercase. The names of the 68000 registers
are reserved.

2.4 Constants:

The digits 8 and 9 are not accepted in octal constants! The explicit
long constant (letter L at the end) is not accepted.

2.5 Strings:

Strings cannot be split using \ followed by newline.

7.2 Unary operators:

Casts and the sizeof operator are not implemented.

7.13 Conditional Operator:

This is not supported in QC. .,

8 Declarations:

Extern and static declarations may not be used within blocks.

QC User Manual 83 9992.5 GST 63/1.01

GST Computer Systems Limited Differences bet~een QC and Standard C

8.6 Initialisation:

Global pointers cannot be initialised (except *char can be initialised
~ith a string constant).

9.7 S~itch Statement:

Local variables are not allowed ~ithin a s~itch statement.

9.11 Goto statement:

QC does not a.Ll.ov go to in functions ~ith local variables in c. block '--\
~ithin the function. -"

12.1 Token replacement:

Macros ~ith parameters are not implemented in QC.

12.3 Conditional Compilation:

The Cif directive is not implemented.

12.4 Line control:

The #line directive is not implemented.

QC User Manual 84 9992.5 GST 63/1.01

Copyright (C) 1985, GST

QC USER MANUAL: ADDENDUK

As a direct result of GST policy for constant development and improvement
of its products, QC is now supplied with the QED Screen Editor snd sn
improved version of the COMPILE program. The QC components list" shown in
section 1.3 of the QC User Manual is replaced by the following paragraphs.

QC Components List

The QC Compilier is issued with the following components:

* three microdrive cartridges containing the compiler, assembler,
linker, runtime library files, a screen editor and example programs

* an AS ring binder containing the QC and QED Screen Editor User
Manuals

QCl and QC2 Cartridges

The contents of microdrive cartridges labelled QCl and QC2 are unchanged.
These are described fully in section 1.3 of the QC User Manual.

Unlabelled Cartridge

The contents of the" microdrive cartridge unlabelled is as follows:,

QED the QED Screen Editor for preparation and editing of QC
(or assemb ler) programs

COMPILE_210 an improved version of the COMPILE program that invokes the
QED editor, displays directory names and (if a single floppy
is used) a free/used sector count and file sizes in bytes

COMPlLE_2l0_C the source code (in QC) for the improved COMPILE progra.

Use of the un18belled Cartridge '.

The cartridge should be alternated with QCl in HDVl_ using QC2 in HDV2_ to
hold the source file(s) that are alternately edited and then compiled.
If you have floppy disks, you are strongly recommended to copy all the
software onto disk in FtPl (which viII also have sufficient room for JOur
source files). Remember to back up your cartridges prior to use.

QC User Manual: AddendUII 1 9992.5 GSt 97/2.00

	p01
	Sammelmappe2
	p01-05
	p06-12
	p13-24
	p25-44
	p45-64
	p65-84
	P85_Addendum

